o b g ,4 3

]
[}
LSy i
1

s e ; i
ﬁw&mﬂwﬁw% R, b

g--

-.\.m’rp- 5...,”% g :Vf.

i ..,ig?%a s

{) : .P_ “..:.
%%”_ il
_ ..~ .. “ __ J_E m__ |
__ __ I .u i h_“ ._.W “

zz@ x\ N w M ﬁ

re Systeinéf%”l

‘Introduction t6Seftwa

University
&
u

Australian
National - .-

S

&
SR

—_———
/
|

Rusialar -
M University IntrOd UCt|On

Rolls Royce Trent XWB for the A350. Photo: AlNonline

Australian
oS/ National

2y University

ﬁu:?trali?n . R 2
3 @y ational
University Revision

Call by value and call by reference

« Parameters are valuesin Java
« Java cannot pass objects, just references to objects

ﬁ\t“'ty Introductory Java J7

Parameters (method arguments)

Parameters are the mechanism for passing information to a method
or constructor.

* Primitive types passed by value
— Changes to parameter are not seen by caller

« Reference types passed by value
— Changes to the reference are not seen by caller
— Changes to object referred to are seen by caller

* Your last parameter may in fact be more than one parameter
(varargs), and treated as an array

73,198 72

Australian
oS/ National

2y University

ﬁu?trali?n . R 2
3 @y ational
University Revision

Collections & ADTs

« Collections: ‘Containers for objects’
— set: mathematical set, unordered, can add, remove, test for membership
— list: ordered list of objects, can add, can remove, can traverse
— map: key, value pairs, keys used to add and retrieve values
« Implemented using the following fundamental ADTs (abstract data
types):
— Trees
— Linked lists
— Hashmaps

Australian

Uanaraty Collections J1 3

The Collection Framework

* Interfaces
— Implementation-agnostic interfaces for collections

* Implementations
— Concrete implementations

 Algorithms

— Searching, sorting, etc

Using the framework saves writing your own: better performance,
fewer bugs, less work, etc.

389-441 598-604 O

Australian

Uanaraty Collections J1 3

Concrete Collection Types

Implemented Using

Interfaces Hash table Resizable Tree Linked list Hash table
array + linked
list
Set HashSet TreeSet LinkedHash
Set
List ArraylList LinkedList
Queue LinkedList LinkedHash
Map
Map HashMap TreeMap

Based on table from http://docs.oracle.com/javase/tutorial/collections/implementations/index.html

389-441 598-604 O

ﬁ\t“'ty Abstract Data Types: Lists A1

Abstract Data Types (ADTs)

Abstract data types describe containers for storing data elements.
An ADT is abstract, not concrete.

A containeris a very general ADT, serving as a holder of objects. A
list is an example of a specific container ADT.

An ADT can be described in terms of the semantics of the operations
that may be performed over it.

ﬁ\t“'ty Abstract Data Types: Lists A1
The List ADT

The list ADT is a container known mathematically as a finite
sequence of elements. A list has these fundamental properties:

* duplicates are allowed

« orderis preserved

A list may support operations such as these:
» create: constructan empty list

* add: add an element to the list

* IS empty: test whether the list is empty

o

Australian
oS/ National

2y University

Australian

e,,, National
University

Hashing

« Hash functions
* Hashing applications
« Java’s hashcode()

Austrahan
Natlonal i

‘a;good h‘ash fdhctidn \

ﬁ\t“'ty Hash Functions CZ

Hash Functions

A hash functionis a function f(k) that maps a key, %, to a value, f(k),
within a prescribed range.

A hashis deterministic. (For a given key, £, f(k) will always be the same).

evonar” Hash Functions C2

=5 Ay
Choosing a Good Hash Function

A good hash for a given population, P, of keys, k&
P, will distribute f(k) evenly within the prescribed range for the hash.

A perfect hash will give a unique f(k) for each kP

ﬁ\t“'ty Hashing Applications C3

Java hashCode()

Java provides a hash code for every object
« 32-bitsignedinteger
 Inherited from Object, but may be overwritten

« Objects for which equals() is true must also have the same
hashCode().

 The hash need not be perfect (i.e. two different objects may share
the same hash).

o

ﬁ\t“'ty Hashing Applications C3

Uses of Hashing

Hash table (a map from key to value)

Pruning a search
— Looking for duplicates
— Looking for similar values

Compression

— A hash is typically much more compact that the key
Correctness

— Checksums can confirm inequality

Australian

e Hashing Applications

Practical Examples...

Luhn Algorithm Hamming Codes

Used to check for Error correcting codes (as
transcription errors in credit used in EEC memory)
cards (last digit checksum).

Australian

e Hashing Applications

Practical Examples...

rsync (Tridgell) MDS5 (Rivest)
Synchronize files by (almost) Used to encode passwords
only moving the parts that for a long time (but no
are different. longer).

Australian
oS/ National

2y University

ﬁu?rali?n . R 2
3 @y ational
University Revision

Computational Complexity

« How will the execution time of a problem change as the size of the
problem changes?
— Need to define ‘size of problem’
— Need to understand how problem time changes as that variable changes

Examples
Practlcal Study

ﬁ\t“'ty Computational Complexity C5

Context

Key computational resources:
 Time

« Space

* Energy

Computational complexity is the study of how problem size affects
resource consumption fora given implementation.

 Worst case
* Average case

ﬁ\t“'ty Computational Complexity C5

Broad Approach

1. Identify N, the number that characterizes the problem size.
— Number of pixels on screen
— Number of elements to be sorted
— etc

2. Study the algorithm to determine how resource consumption
changes as a function of N.

Australian

Univarsty Computational Complexity

Concrete Examples

public int mindist(ArraylList<Integer> values) {
int min = Integer .MAX_VALUE; 1
for (int i = 0; 1 < values.size(); i++) { N
for (int j =1 + 1; j < values.size(); j++) { (N-1)N22
int diff = values.get(i)-values.get(j); (N-1)N2
if (Math.abs(diff) < min) (N = 1)N/2
min = Math.abs(diff); (N-1)N2

S(N)=1+N+4((N=1)N/2)=1+N+2N2—2N=2N2—N + 1 € O(N?)

Note:N-1+N—2+...2+1=(N=1)N/2

Australian
oS/ National

2y University

ﬁu:?trali?n . R 2
3 @y ational
University Revision

Formal Grammars (EBNF)

* Not about semantics, just about rules that define relationship
among symbols

Australian

ational Grammars C 6
Formal Grammars

Formal languages are distinguished from
natural languages by their artificial
construction (rather than natural
emergence).

Noam Chomsky is often credited with
opening the field of formal grammars while |
studying natural languages. " Noam Chormsky

ﬁttllty Grammars C 6

Extended Backus-Naur Form

EBNF is a standard way of
representing the syntax of a
formal language (but not the
semantics!)
* Terminal symbols

— e.g. characters or strings

* Productionrules Niklaus Wirth
— combinations of terminal symbols

ﬁ\ttl'ty Grammars C 6

Extended Backus-Naur Form

Very basic syntax of EBNF production rules:
» ‘=" defines a production rule
« ‘|’ identifies alternates (e.g. ‘1’ | ‘2’ | 3’)

- '{’, 'Y identify expressions that may occur zero or more times (e.g. '1’, { ‘0’ }
)
« ‘[, 7T identify expressions that may occur zero or one time (e.g. ‘1’, [‘0’ 1)

« ', identifies concatenation

« ‘-’ identifies exceptions

« ‘C, Y identify groups

*;” terminates a production rule

ﬁ\ttl'ty Grammars C 6

Example

(* a simple program syntax in EBNF — Wikipedia *)
program= "PROGRAM', white space, identifier, white space,
"BEGIN', white space,
{ assignment, ";", white space },
"END."' ;
identifier = alphabetic character, { alphabetic character | digit} ;
number = ["-"], digit, { digit} ;

string= """, { all characters - """}, """ ;
assignment = identifier , ":=" , (number | identifier | string) ;
alphabetic character = "A" | "B" | "C" | "D" I "E" | "F" | "G"

["H" | "I 1 "J" 1 "K" | "L" | "M" | "N"

o™ ["P™ 1 "Q" I "R™ | "S" | "T" | "U"
(VAR I A D G A A B
digit="0@" | "1" | "2" | "3" | "4" | "5" | "e" | "7" | "8" | "9" ;
white space = ? white space characters ? ;
all characters = ? all visible characters ? ;

ﬁ\ttl'ty Grammars C 6

Example

‘90 1 ‘1’1’00’ | ‘117 | ‘@00’ | ‘101’ | ‘111’ | ’010@°

pal= ‘@’ | ‘1” | ‘@’ , [pall, ‘@) | (‘1’, [pall, ‘1°);

Australian
oS/ National

2y University

ﬁu?rali?n . R 2
3 @y ational
University Revision

Exam Q1

* Need to understand basic Java collections
— How do you add, get and remove elements

* Need to understand recursion
— Stopping conditions
— Tracing execution

Australian

e Sevisen |22

Exam Q2

« Only answer questions you're confident about
« Can get 10/10 marks by only answering 10/15 questions

— Don’t stress if there are some you don’t know
* Ensure you mark your answer clearly

ﬁu?trali?n . R 2
) @y ational
University Revision

Exam Q3

Read all parts of the question very carefully
Ensure you include all relevant code
May want to revisit design after other parts of Question

3i) About clearly explaining a good OO design
— Does your design make good use of OO?

— Does it make sense to use inheritance?

— Does it make sense to use interfaces?

— What relationship should there be among classes?
— Should you use collection types?

Australian Rev | = | o R 2

< National
2y University

Exam Q3

« 3ii) Know how to declare a class and its fields
« 3iii), iv), & vi) ensure you write all relevant code
« 3v) know how to write a unit test

ﬁ\ttl'ty Revision RZ
Exam Q4

Very close to example in lecture
Ensure you include all relevant code

Don’timplement add(V value) as { secretadd(value); }
Notice differences with lecture code

Answer this question yourself and then compare to lecture code

ﬁu?trali?n . R 2
3 @y ational
University Revision

Exam Q5

* i) Be clear and specific. Need to understand whata race is (J16)

* ii) Need to understand sets, linked lists and complexity
« iii) Not too hard, only four digits, each can be "1’ or '0’. Try to do it.

* |v) Harder; see revision lecture

ﬁu?rali?n . R 2
3 @y ational
University Revision

Exam Q6

Provide five clearly identified major points
Write in simple, plain clear English

Clarity is essential

Less is more

Australian Rev I . I on Rz

< National
2y University

Exam, Overall

« Budgetyourtime
« State your assumptions
 Try to communicate your understanding clearly

