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Call by value and call by reference

« Parameters are valuesin Java
« Java cannot pass objects, just references to objects
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Parameters (method arguments)

Parameters are the mechanism for passing information to a method
or constructor.

* Primitive types passed by value
— Changes to parameter are not seen by caller

« Reference types passed by value
— Changes to the reference are not seen by caller
— Changes to object referred to are seen by caller

* Your last parameter may in fact be more than one parameter
(varargs), and treated as an array

73,198 72
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Collections & ADTs

« Collections: ‘Containers for objects’
— set: mathematical set, unordered, can add, remove, test for membership
— list: ordered list of objects, can add, can remove, can traverse
— map: key, value pairs, keys used to add and retrieve values
« Implemented using the following fundamental ADTs (abstract data
types):
— Trees
— Linked lists
— Hashmaps
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The Collection Framework

* Interfaces
— Implementation-agnostic interfaces for collections

* Implementations
— Concrete implementations

 Algorithms

— Searching, sorting, etc

Using the framework saves writing your own: better performance,
fewer bugs, less work, etc.

389-441 598-604 O
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Concrete Collection Types

Implemented Using

Interfaces Hash table Resizable Tree Linked list Hash table
array + linked
list
Set HashSet TreeSet LinkedHash
Set
List ArraylList LinkedList
Queue LinkedList LinkedHash
Map
Map  HashMap TreeMap

Based on table from http://docs.oracle.com/javase/tutorial/collections/implementations/index.html

389-441 598-604 O






ﬁ\t“'ty Abstract Data Types: Lists A1

Abstract Data Types (ADTs)

Abstract data types describe containers for storing data elements.
An ADT is abstract, not concrete.

A containeris a very general ADT, serving as a holder of objects. A
list is an example of a specific container ADT.

An ADT can be described in terms of the semantics of the operations
that may be performed over it.
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The List ADT

The list ADT is a container known mathematically as a finite
sequence of elements. A list has these fundamental properties:

* duplicates are allowed

« orderis preserved

A list may support operations such as these:
» create: constructan empty list

* add: add an element to the list

* IS empty: test whether the list is empty

o
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Hashing

« Hash functions
* Hashing applications
« Java’s hashcode()



Austrahan
Natlonal i

‘a;good h‘ash fdhctidn \




ﬁ\t“'ty Hash Functions CZ

Hash Functions

A hash functionis a function f(k) that maps a key, %, to a value, f(k),
within a prescribed range.

A hashis deterministic. (For a given key, £, f(k) will always be the same).
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=5 Ay
Choosing a Good Hash Function

A good hash for a given population, P, of keys, k&
P, will distribute f(k) evenly within the prescribed range for the hash.

A perfect hash will give a unique f(k) for each kP
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Java hashCode()

Java provides a hash code for every object
« 32-bitsignedinteger
 Inherited from Object, but may be overwritten

« Objects for which equals() is true must also have the same
hashCode().

 The hash need not be perfect (i.e. two different objects may share
the same hash).

o
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Uses of Hashing

Hash table (a map from key to value)

Pruning a search
— Looking for duplicates
— Looking for similar values

Compression

— A hash is typically much more compact that the key
Correctness

— Checksums can confirm inequality



Australian

e Hashing Applications

Practical Examples...

Luhn Algorithm Hamming Codes

Used to check for Error correcting codes (as
transcription errors in credit  used in EEC memory)
cards (last digit checksum).
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Practical Examples...

rsync (Tridgell) MDS5 (Rivest)
Synchronize files by (almost) Used to encode passwords
only moving the parts that for a long time (but no
are different. longer).
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Computational Complexity

« How will the execution time of a problem change as the size of the
problem changes?
— Need to define ‘size of problem’
— Need to understand how problem time changes as that variable changes



Examples
Practlcal Study
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Context

Key computational resources:
 Time

« Space

* Energy

Computational complexity is the study of how problem size affects
resource consumption fora given implementation.

 Worst case
* Average case
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Broad Approach

1. Identify N, the number that characterizes the problem size.
— Number of pixels on screen
— Number of elements to be sorted
— etc

2. Study the algorithm to determine how resource consumption
changes as a function of N.
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Concrete Examples

public int mindist(ArraylList<Integer> values) {
int min = Integer .MAX_VALUE; 1
for (int i = 0; 1 < values.size(); i++) { N
for (int j =1 + 1; j < values.size(); j++) { (N-1)N22
int diff = values.get(i)-values.get(j); (N-1)N2
if (Math.abs(diff) < min) (N = 1)N/2
min = Math.abs(diff); (N-1)N2

S(N)=1+N+4((N=1)N/2)=1+N+2N2—2N=2N2—N + 1 € O(N?)

Note:N-1+N—2+...2+1=(N=1)N/2



Australian
oS/ National

2y University



ﬁu:?trali?n . R 2
3 @y ational
University Revision

Formal Grammars (EBNF)

* Not about semantics, just about rules that define relationship
among symbols
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Formal Grammars

Formal languages are distinguished from
natural languages by their artificial
construction (rather than natural
emergence).

Noam Chomsky is often credited with
opening the field of formal grammars while |
studying natural languages. " Noam Chormsky
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Extended Backus-Naur Form

EBNF is a standard way of
representing the syntax of a
formal language (but not the
semantics!)
* Terminal symbols

— e.g. characters or strings

* Productionrules Niklaus Wirth
— combinations of terminal symbols
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Extended Backus-Naur Form

Very basic syntax of EBNF production rules:
» ‘=" defines a production rule
« ‘|’ identifies alternates (e.g. ‘1’ | ‘2’ | 3’ )

- '{’, 'Y identify expressions that may occur zero or more times (e.g. '1’, { ‘0’ }
)
« ‘[, 7T identify expressions that may occur zero or one time (e.g. ‘1’, [ ‘0’ 1)

« ', identifies concatenation

« ‘-’ identifies exceptions

« ‘C, Y identify groups

*;” terminates a production rule
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Example

(* a simple program syntax in EBNF — Wikipedia *)
program= "PROGRAM', white space, identifier, white space,
"BEGIN', white space,
{ assignment, ";", white space },
"END."' ;
identifier = alphabetic character, { alphabetic character | digit} ;
number = [ "-" ], digit, { digit} ;

string= """, { all characters - """}, """ ;
assignment = identifier , ":=" , ( number | identifier | string) ;
alphabetic character = "A" | "B" | "C" | "D" I "E" | "F" | "G"

[ "H" | "I 1 "J" 1 "K" | "L" | "M" | "N"

o™ [ "P™ 1 "Q" I "R™ | "S" | "T" | "U"
(VAR I A D G A A B
digit="0@" | "1" | "2" | "3" | "4" | "5" | "e" | "7" | "8" | "9" ;
white space = ? white space characters ? ;
all characters = ? all visible characters ? ;
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Example

‘90 1 ‘1’1’00’ | ‘117 | ‘@00’ | ‘101’ | ‘111’ | ’010@°

pal= ‘@’ | ‘1” | ‘@’ , [pall, ‘@) | (‘1’, [pall, ‘1°);
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Exam Q1

* Need to understand basic Java collections
— How do you add, get and remove elements

* Need to understand recursion
— Stopping conditions
— Tracing execution
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Exam Q2

« Only answer questions you're confident about
« Can get 10/10 marks by only answering 10/15 questions

— Don’t stress if there are some you don’t know
* Ensure you mark your answer clearly
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Exam Q3

Read all parts of the question very carefully
Ensure you include all relevant code
May want to revisit design after other parts of Question

3i) About clearly explaining a good OO design
— Does your design make good use of OO?

— Does it make sense to use inheritance?

— Does it make sense to use interfaces?

— What relationship should there be among classes?
— Should you use collection types?
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Exam Q3

« 3ii) Know how to declare a class and its fields
« 3iii), iv), & vi) ensure you write all relevant code
« 3v) know how to write a unit test
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Exam Q4

Very close to example in lecture
Ensure you include all relevant code

Don’timplement add(V value) as { secretadd(value); }
Notice differences with lecture code

Answer this question yourself and then compare to lecture code
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Exam Q5

* i) Be clear and specific. Need to understand whata race is (J16)

* ii) Need to understand sets, linked lists and complexity
« iii) Not too hard, only four digits, each can be "1’ or '0’. Try to do it.

* |v) Harder; see revision lecture
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Exam Q6

Provide five clearly identified major points
Write in simple, plain clear English

Clarity is essential

Less is more
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Exam, Overall

« Budgetyourtime
« State your assumptions
 Try to communicate your understanding clearly



