
Introduction to Software Systems 1110/1140/6710

A/Prof Stephen Gould

COMP1140
Guest Lecture 1



Game Playing AI

Stephen Gould
stephen.gould@anu.edu.au

COMP1140 Guest Lecture
12 August 2019

mailto:stephen.gould@anu.edu.au


A Brief History of AI

Mechanical Turk (1700) John von NeumannJohn McCarthy Arthur Samuel



A game consists of a set of two or more players, a set of moves for the 
players, and a specification of payoffs (outcomes) for each combination 
of strategies.

Many different types of games:
• two-person zero-sum
• multi-player
• perfect information games
• imperfect information games
• games of chance

Games



Game Trees

A strategy defines a complete 
plan of action for a given player.

Given enough processing time an 
optimal strategy can be found for 
games of perfect information by 
enumerating paths of a game 
tree. However, in practice this can 
only be done for small games.



Minimax

Consider two players, MAX and MIN. Player MAX is trying to maximize 
the score and player MIN is trying to minimize the score. We assume 
that the players are rational.



Minimax

The minimax algorithm allows each player to compute their optimal move 
on a game tree of alternating MAX and MIN nodes.
The value of a node is the payoff for a game that is played optimally from 
that node until the end of the game.

max-value(s)
if terminal(s) then
return v(s)

end if
v = −∞
for each successor s’ do
v = max(v, min-value(s’))

end for
return v

min-value(s)
if terminal(s) then
return v(s)

end if
v = ∞
for each successor s’ do
v = min(v, max-value(s’))

end for
return v



Minimax Example

MAX

MAX

MIN

MIN

3 5 7 2 2 1 4 8

5 7 2 8

5 2

5



Alpha-beta Pruning

Minimax suffers from the problem that the number of game states it 
has to examine is exponential in the number of moves.
Alpha-beta pruning is a method for reducing the number of nodes that 
need to be evaluated by only considering nodes that may be reached in 
game play.
Alpha-beta pruning places bounds on the values appearing anywhere 
along a path:

• 𝛼: the best (highest) value found so far for MAX
• 𝛽: the best (lowest) value found so far for MIN

𝛼 and 𝛽 propagate down the game tree. The value v propagates up the 
game tree.



Alpha-beta Pruning (2)

Initialize 𝛼 = −∞ and 𝛽 = ∞
max-value(𝐬, 𝜶, 𝜷)
if terminal(s) then
return v(s)

end if
v = −∞
for each successor s’ do
v = max(v, min-value(s’,𝛼,𝛽))
if v ≥ 𝛽 then
return v

end if
𝛼 = max(𝛼, v)

end for
return v

min-value(𝐬, 𝜶, 𝜷)
if terminal(s) then
return v(s)

end if
v = ∞
for each successor s’ do
v = min(v, max-value(s’,𝛼,𝛽))
if v ≤ 𝛼 then
return v

end if
β = min(𝛽, v)

end for
return v



Alpha-beta Pruning Example

MAX

MAX

MIN

MIN

3 5 7 2 1

5 7 2

5 2

5



Multi-player Games

When we have more than two players we need to adapt the minimax
approach. The most conservative strategy is to assume that all of your 
opponents are conspiring to minimize your score.

• Treat your opponents as one big powerful player, but can be too pessimistic.



Big Games (e.g., Blokus or Blooms)

* Not all symmetries exploited.

58 possible moves*

…



…

116 possible moves*

Big Games (e.g., Blokus or Blooms)

* Not all symmetries exploited.

…

…

116 possible moves*



(20 pieces)
? moves

58 x 116 x 116 x 58 =
45,265,984 moves

58 x 116 x 116 =
780,448 moves

58 x 116 =
6,728 moves

Big Games (e.g., Blokus or Blooms)

(21 pcs)
58 moves

…



Static Evaluation Function

For real-world games, even with alpha-beta pruning, we still can't 
search the entire game tree. In these situations, instead of a terminal
test, we introduce a cut-off test that applies a heuristic value at some 
intermediate game state.
The heuristic is called a static evaluation function and it returns an 
estimate of the expected payoff from a given position.
Machine learning techniques are often used to find a good static 
evaluation function based on a linear combination of features:

,𝑣 𝑠 = 𝑤0𝑓0 𝑠 +⋯+𝑤4𝑓4(𝑠)



Cut-off Test

A cut-off test determines when to apply static evaluation. Searching to 
a fixed depth is a simple cut-off policy, but this suffers from the horizon 
problem: an unavoidable damaging move that can be pushed beyond 
the depth of the search.



Cut-off Test

A cut-off test determines when to apply static evaluation. Searching to 
a fixed depth is a simple cut-off policy, but this suffers from the horizon 
problem: an unavoidable damaging move that can be pushed beyond 
the depth of the search.
Another problem is stopping in the middle of a sequence of moves 
(e.g., piece exchange in chess).
Some techniques exist to avoid these issues:

• only apply static evaluation on quiescent positions (i.e., stable heuristic).
• killer heuristic – always consider bad moves from the opponent.

Games that include an element of chance require that we calculate the 
expected value of a position rather than the exact value.



Learning the Static Evaluation Function: 
Exploration versus Exploitation
Learning the static evaluation function is a classic reinforcement 
learning (RL) problem. 

• Repeatedly play against yourself.
• Reward board positions that lead to wins.
• Punish board positions that lead to losses.

A crucial trade off is in choosing between exploration and exploitation. 



Q-Learning

• Many games can be modelled as a Markov Decision Process:
• An agent observes the state of the game 𝑥8 at time 𝑡
• The agent decides on an action 𝑎8
• The agent’s action changes the game to a new state 𝑥8;0

(can be deterministically or stochastically governed)
• The agent receives a reward 𝑟8;0

• Q-learning is an RL method for learning the quality of a state-action pair
• The optimal action is then determined as

𝑎⋆ = max
AB

𝑄 𝑠8, 𝑎8



Deep Q-Learning

• Used by DeepMind’s AlphaGo to beat the reigning Go champion
• Also used to learn to play Atari and other computer games from raw pixels

• The Q-function tells you how good each 
state-action pair is

• But, the number of state-action pairs is way 
too large to store the Q-function as a table

• … so deep Q-learning approximates it by a 
neural network

[Silver et al., Nature 2017]



Games with Chance

RAND

RAND

MAX

MIN



Games with Chance (e.g., Stratopolis)

red’s (opponent)
next move

green’s
next move

random player shuffles remaining 
pieces

red’s (opponent) 
move

green’s 
move

…



Monte Carlo Simulation

Monte Carlo simulation is randomized algorithm that can be used to 
approximate the value of an intermediate game state.

• Develop the game tree to some fixed depth or some fixed width
• Run simulations from each leaf node
• Use results of simulation to assign a value to the node



Opening Book and Endgame Databases

• Opening books can save computation at the beginning of a 
game by storing a good sequence of starting moves.

• For variety, a player can randomly choose between the moves.
• As soon as an opponent plays a move that is not encoded in the 

book, the player must resort to search or simulated game play.

• For some games, the state space reduces near to the end of 
the game. In such cases, an endgame database can be pre-
computed by working backwards from different endings.

• If an agent ever finds a game state that matches one in the endgame 
database it can immediately determined whether it will win or lose.



Milestones in AI Game Playing

1959 Arthur Samuel develops Checkers playing program
1997 IBM’s Deep Blue chess machine beats Gary Kasperov
2007 Checkers solved by University of Alberta
2011 IBM’s Watson wins Jeopardy! requiring natural 

language understanding
2015 Deep reinforcement learning algorithms learn to play 

Atari arcade games from scratch
2016 Google DeepMind’s AlphaGo beats Lee Sedol, Korea
2017 AlphaZero learns Go + Chess + Shogi from scratch


