Game Playing AI

Guest Lecture in Structured Programming

Pascal Bercher
Many thanks to Stephen Gould!
Slides partially build upon his lecture from 2019.
Planning \& Optimization Group
College of Engineering and Computer Science
the Australian National University (ANU)
August 21, Semester 2, 2020

Australian
National
University

- Motivation: Why Solving Games Automatically Anyways?
- What are Games? (A few Definitions)
- Solving Small Games
- MiniMax
- α / β Pruning
- Games with Chance
- Solving Large Games
- Defeating Dragons with Al
- Game AI Success Story
- Game Als for computer games (modern ones or board game adaptations).

Why Bother? Why Solving Games Automatically?

- Game Als for computer games (modern ones or board game adaptations).
- Purely for the sake of knowledge!
E.g., can you always (force a) win in "Connect 4" when you start?

Why Bother? Why Solving Games Automatically?

- Game Als for computer games (modern ones or board game adaptations).
- Purely for the sake of knowledge!
E.g., can you always (force a) win in "Connect 4" when you start?
- Because many real-world problems can be regarded a game! The other player(s) in the game might be other agents or surroundings.

Why Bother? Why Solving Games Automatically?

- Game Als for computer games (modern ones or board game adaptations).
- Purely for the sake of knowledge!
E.g., can you always (force a) win in "Connect 4" when you start?
- Because many real-world problems can be regarded a game! The other player(s) in the game might be other agents or surroundings.
- Robotics or Multi-Agent-Planning (though this is often cooperative, whereas we take a look at antagonistic games)

Why Bother? Why Solving Games Automatically?

- Game Als for computer games (modern ones or board game adaptations).
- Purely for the sake of knowledge!
E.g., can you always (force a) win in "Connect 4" when you start?
- Because many real-world problems can be regarded a game! The other player(s) in the game might be other agents or surroundings.
- Robotics or Multi-Agent-Planning (though this is often cooperative, whereas we take a look at antagonistic games)
- Economics! Cf. game theory (look up: Nash Equilibrium and Prisoner's Dilemma)

What are Games? Which Kinds Exist?

A game consists of a set of one or more players, a set of moves for the players, and a specification of payoffs (outcomes) for each combination of strategies (also called policy).

What kinds of restrictions can games have?

What are Games? Which Kinds Exist?

A game consists of a set of one or more players, a set of moves for the players, and a specification of payoffs (outcomes) for each combination of strategies (also called policy).

What kinds of restrictions can games have?

- Perfect information vs. imperfect information

What are Games? Which Kinds Exist?

A game consists of a set of one or more players, a set of moves for the players, and a specification of payoffs (outcomes) for each combination of strategies (also called policy).

What kinds of restrictions can games have?

- Perfect information vs. imperfect information
- (One-player games vs.) Two-player games vs. multi-player games

What are Games? Which Kinds Exist?

A game consists of a set of one or more players, a set of moves for the players, and a specification of payoffs (outcomes) for each combination of strategies (also called policy).

What kinds of restrictions can games have?

- Perfect information vs. imperfect information
- (One-player games vs.) Two-player games vs. multi-player games
- Zero-sum games vs. non-zero-sum games

What are Games? Which Kinds Exist?

A game consists of a set of one or more players, a set of moves for the players, and a specification of payoffs (outcomes) for each combination of strategies (also called policy).

What kinds of restrictions can games have?

- Perfect information vs. imperfect information
- (One-player games vs.) Two-player games vs. multi-player games
- Zero-sum games vs. non-zero-sum games
- Games with chance (randomness) vs. games without chance

What's a Strategy?

A strategy defines a complete plan of action for a given player.

Given enough processing time an optimal strategy can be found for games of perfect information by enumerating paths of a game tree. However, in practice this can only be done for small games.

What are we Looking For?

What are we looking for?

- Game AI (strategy) vs. game theoretic outcome!

What's the game theoretic outcome?

- The outcome of the game assuming all players play rational.
- Rationality = optimization of expected reward.
- Outcome is known? \rightarrow The respective game is "solved".

What are we Looking For?

What are we looking for?

- Game AI (strategy) vs. game theoretic outcome!
- Just because we have an Al that beats all humans, it doesn't mean the game is solved!

What's the game theoretic outcome?

- The outcome of the game assuming all players play rational.
- Rationality = optimization of expected reward.
- Outcome is known? \rightarrow The respective game is "solved".

MiniMax - How to Solve Small Games?

Using search to solve a game:

- If the game tree is "sufficiently small" we can search in it to find and extract a strategy.
- But we still need to do that efficiently!

Using search to solve a game:

- If the game tree is "sufficiently small" we can search in it to find and extract a strategy.
- But we still need to do that efficiently!

Consider two players, MAX and MIN. MAX tries to maximize his/her own score, and player Min tries to minimize it.

We assume that the players are rational.

MiniMax - The MiniMax Algorithm

The MiniMax algorithm allows each player to compute their optimal move on a game tree of alternating MAX and Min nodes.

The value of a node is the payoff for a game that is played optimally from that node until the end of the game.

```
max-value(s)
    if state s is a leaf then
        return payoff(s)
    v:=-\infty
    forall successor states s' of s do
    Lv:= max {v, min-value(s')}
    return v
```

```
min-value(s)
    if state s is a leaf then
        Lreturn payoff(s)
    v:=\infty
    forall successor states s' of s do
    v}:=\operatorname{min}{v,\mathrm{ max-value(s'})
    return v
```


MiniMax - Example: Tic Tac Toe

MaX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the Max player (i.e., 1 is a win, -1 a loss, 0 a draw).

Max

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MaX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

MAX player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

Max player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

Max player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

Max player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax - Example: Tic Tac Toe

Max player plays X, Min plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

What is the runtime of MiniMax?

- Time: All nodes have to be visited! How many are there?
- Assume each game ends after d moves (tree depth). Each player has at most b moves (branching factor)

What is the runtime of MiniMax?

- Time: All nodes have to be visited! How many are there?
- Assume each game ends after d moves (tree depth). Each player has at most b moves (branching factor)
\rightarrow Runtime is in $O\left(b^{d}\right)$ (exponential!)

What is the runtime of MiniMax?

- Time: All nodes have to be visited! How many are there?
- Assume each game ends after d moves (tree depth). Each player has at most b moves (branching factor)
\rightarrow Runtime is in $O\left(b^{d}\right)$ (exponential!)
What is the space requirement of MiniMax?
- We perform a depth-first search!

What is the runtime of MiniMax?

- Time: All nodes have to be visited! How many are there?
- Assume each game ends after d moves (tree depth). Each player has at most b moves (branching factor)
\rightarrow Runtime is in $O\left(b^{d}\right)$ (exponential!)
What is the space requirement of MiniMax?
- We perform a depth-first search!
- So only the longest path needs to be stored.
\rightarrow Space is in $O(b \cdot d)$ (linear)
- MiniMax suffers from the problem that the number of game states it has to examine is always exponential in the number of moves.
- α / β pruning is a method for reducing the number of nodes that need to be evaluated by only considering nodes that may be reached in game play.
- Alpha-beta pruning places bounds on the values appearing anywhere along a path:
- α is the best (highest) value found so far for MAX
- β is the best (lowest) value found so far for Min
α and β propagate down the game tree. v propagates up the game tree.

α / β Pruning — The MiniMax Algorithm Extended By α / β Pruning

Keep in mind:

- α is the best value found so far for MAX, initialize with $-\infty$.
- β is the best value found so far for Min, initialize with ∞.

```
max-value(s, \alpha, \beta)
    if state s is a leaf then
        return payoff(s)
    v := -\infty
    forall successor states s' of s do
        v:= max {v, min-value (s', \alpha,\beta)}
        if v\geq\beta}\mathrm{ then
            return v
        \alpha:= max {\alpha,v}
    return v
```

```
min-value(s, }\alpha,\beta
    if state s is a leaf then
        return payoff(s)
    v:=\infty
    forall successor states s' of s do
        v:= min {v, max-value(s',\alpha,\beta)}
        if v}\leq\alpha\mathrm{ then
        return v
        \beta:= min {\beta,v}
    return v
```


α / β Pruning - Idea Behind Pruning: When and Why?

α / β Pruning - Example: Tic Tac Toe

Start with $\alpha=-1$ (rather than $-\infty)$ and $\beta=1$ (rather than ∞)

MaX

α / β Pruning - Example: Tic Tac Toe

Start with $\alpha=-1$ (rather than $-\infty)$ and $\beta=1$ (rather than ∞)

Min

α / β Pruning - Example: Tic Tac Toe

Start with $\alpha=-1$ (rather than $-\infty$) and $\beta=1$ (rather than ∞)

Start with $\alpha=-1$ (rather than $-\infty)$ and $\beta=1$ (rather than ∞)

Start with $\alpha=-1$ (rather than $-\infty)$ and $\beta=1$ (rather than ∞)

Start with $\alpha=-1$ (rather than $-\infty)$ and $\beta=1$ (rather than ∞)

Start with $\alpha=-1$ (rather than $-\infty)$ and $\beta=1$ (rather than ∞)

What is the runtime (and space requirements) of α / β pruning?

- In the worst case: identical to MiniMax! If nothing can be pruned.
- On average: Complexities omitted. (Due to lack of time.)
- This can happen depending on the order in which edges are traversed/payoffs are discovered.
- In practice, it is very unlikely that no pruning occurs, so always choose α / β pruning over MiniMax!

How to Deal with Randomness?

- A random decision can be regarded as the move of yet another player!
- Certainly that's not another Max player! I.e, the "environment" (the random decision) will not always play in our favor!
- But what is it, then?
- Another Min player? (Too pessimistic...)
- If we want to play rational, we maximize the expectation!

$$
\text { value }(s)=\sum_{\text {successor states } s^{\prime} \text { of } s} P\left(s^{\prime}\right) \cdot \text { value }\left(s^{\prime}\right)
$$

Illustration For a 2-Player Game With Throwing Two Dice, Counting Their Sum

When is using MiniMax and α / β Pruning still feasible?

- Recall that the complexity of MiniMax (and α / β !) is exponential! I.e., in $O\left(b^{d}\right)$, with
- b, the branching factor (available moves per state)
- d, the depth (number of moves until game ends)

When is using MiniMax and α / β Pruning still feasible?

- Recall that the complexity of MiniMax (and α / β !) is exponential! I.e., in $O\left(b^{d}\right)$, with
- b, the branching factor (available moves per state)
- d, the depth (number of moves until game ends)
- For some games that is simply too large!
- So, let's take a look at some examples...

Examples for (estimated) number of reachable (game) states: (Source: https://en.wikipedia.org/wiki/Game_complexity)

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Game_complexity)

- Rough maximum: $3^{9}=19,683$ (including invalid states)

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Game_complexity)

- Rough maximum: $3^{9}=19,683$ (including invalid states)
- Actual maximum: 5,478

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Game_complexity)

- Rough maximum: $3^{9}=19,683$ (including invalid states)
- Actual maximum: 5,478
- Maximum after duplicating symmetries: 765

The "Size" of Games: Tic Tac Toe

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Game_complexity)

- Rough maximum: $3^{9}=19,683$ (including invalid states)
- Actual maximum: 5,478
- Maximum after duplicating symmetries: 765
- There are still 26, 830 possible games!
(For those states with eliminated duplicates.)
What's a "game"?
A path in the MiniMax tree!

The "Size" of Games: Connect 4

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Connect_Four)

- Rough maximum: $3^{7.6}<1.110^{20}$ (including invalid states)
- Actual maximum: $4,531,985,219,092 \approx 4.5 \cdot 10^{12}$ (still including symmetries)
- First solved, independently, by James Dow Allen (October 1, 1988), and Victor Allis (October 16, 1988).
- Note that today it can also be solved using α / β pruning!

The "Size" of Games: Blokus

Examples for (estimated) number of reachable (game) states:
(Source: by Stephen Gould, previous year(s))

approximatelty 58 moves, not all symmetries eliminated

The "Size" of Games: Blokus

Examples for (estimated) number of reachable (game) states:
(Source: by Stephen Gould, previous year(s))

The "Size" of Games: Blokus

Examples for (estimated) number of reachable (game) states:
(Source: by Stephen Gould, previous year(s))

The "Size" of Games: Chess

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Shannon_number)

- Some maximum: $5 \cdot 10^{52}$
- Lower limit on game tree size: 10^{123}
- More conservative estimate on lower limit of game tree size, eliminating obvious bad moves: 10^{40}

The "Size" of Games: Go

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Shannon_number)

- Legal positions: $2.08168199382 \cdot 10^{170}$
- Lower limit on number of games: $10^{\left(10^{48}\right)}$
- Upper limit on number of games: $10^{\left(10^{171}\right)}$

How to deal with large games?

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff!

How to deal with large games?

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff! But how?
- hand-crafted heuristics

Black to move

Title: Artificial Intelligence: A Modern Approach (3rd Ed.)
Authors: Stuart Russel and Peter Norvig
URL: https://aima.cs.berkeley.edu/
Estimate per piece:

- pawn: 1 pt
- knight/bishop: 3 pts
rook: 5 pts
queen: 9 pts

Estimate: Black: 7 pts versus White: 6 pts
\rightarrow Black leading! (Only very slightly.)

How to deal with large games?

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff! But how?
- hand-crafted heuristics
- learned heuristics

Machine learning techniques are often used to find a good static evaluation function based on a linear combination of features:

$$
\hat{v}(s)=w_{1} f_{1}(s)+\cdots+w_{n} f_{n}(s)
$$

How to deal with large games?

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff! But how?
- hand-crafted heuristics
- learned heuristics

Machine learning techniques are often used to find a good static evaluation function based on a linear combination of features:

$$
\hat{v}(s)=w_{1} f_{1}(s)+\cdots+w_{n} f_{n}(s)
$$

Note the similarity to chess!

- $w_{1}=1, f_{1}(s)=$ number of pawns in s
$w_{2}=3, f_{2}(s)=$ number of knights/bishops in s

How to deal with large games?

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff! But how?
- hand-crafted heuristics
- learned heuristics
- simulate a game, use the outcome as estimate

Monte-Carlo Tree Search is a well-known algorithm exploiting this idea. It works in four phases:

- Selection (select a non-terminal leaf based on current strategy)
- Expansion (expand the selected node)
- Simulation (play a random game to the end)
- Backpropagation (use the outcome to update strategy)

Interested? See, e.g.,
https://www. youtube.com/watch?v=UXW2yZndl7U (15:30, lecture by Dr. John Levine from Univ. of Strathclyde)

When to use heuristics?

- In standard MiniMax or alpha/beta pruning, we make a terminal test to obtain the payoff, or continue expanding. With heuristics, we instead make a cut-off test to check whether we should stop expansion and estimate the payoff of the current node.

When to use heuristics?

- In standard MiniMax or alpha/beta pruning, we make a terminal test to obtain the payoff, or continue expanding. With heuristics, we instead make a cut-off test to check whether we should stop expansion and estimate the payoff of the current node.
- What about using a fixed depth as cut-off test? \rightarrow Suffers from the horizon problem:

Title: Artificial Intelligence: A Modern Approach (3rd Ed.)
Authors: Stuart Russel and Peter Norvig
URL: https://aima.cs.berkeley.edu/
White can promote a pawn into a queen on his next move! So the cut-off test should be negative in this state.

Black to move

The Assignment: Tsuro of the Seas

But let's start with Tsuro, the "underlying game mechanics".

Figure: YouTube video: https://www.youtube.com/watch?v=MGvY3jsLN1। (1:25) Code: M-G-v-Y-3-j-s-L-N-1 (one)-I(capital-i)

The Assignment: Tsuro of the Seas

Tsuro of the Seas: Ultra-short introduction

Figure: YouTube video: https://www.youtube.com/watch?v=ziQS8rcT5EA (we just take a glance from 5:04 to 5:58) Code: z-i-Q-S-8-r-c-T-5-E-A

Regarding the game rules: Please stick to the ones officially provided by Steve Blackburn!

Mile Stones in AI Game Playing

1959 Arthur Samuel develops Checkers playing program

Mile Stones in Al Game Playing

1959 Arthur Samuel develops Checkers playing

 program1997 IBM's Deep Blue chess machine beats Garry Kasparov

Mile Stones in Al Game Playing

1959 Arthur Samuel develops Checkers playing program

1997 IBM's Deep Blue chess machine beats Garry Kasparov

2007 Checkers solved by University of Alberta

1959 Arthur Samuel develops Checkers playing program

1997 IBM's Deep Blue chess machine beats Garry Kasparov

2007 Checkers solved by University of Alberta
2011 IBM's Watson wins Jeopardy! requiring natural language understanding

1959 Arthur Samuel develops Checkers playing program

1997 IBM's Deep Blue chess machine beats Garry Kasparov

2007 Checkers solved by University of Alberta
2011 IBM's Watson wins Jeopardy! requiring natural language understanding

2015 Deep reinforcement learning algorithms learn to play Atari arcade games from scratch

1959 Arthur Samuel develops Checkers playing program

1997 IBM's Deep Blue chess machine beats Garry Kasparov

2007 Checkers solved by University of Alberta
2011 IBM's Watson wins Jeopardy! requiring natural language understanding

2015 Deep reinforcement learning algorithms learn to play Atari arcade games from scratch

2016 Google DeepMind's AlphaGo beats Lee Sedol, Korea

Mile Stones in AI Game Playing

1959 Arthur Samuel develops Checkers playing program

1997 IBM's Deep Blue chess machine beats Garry Kasparov

2007 Checkers solved by University of Alberta
2011 IBM's Watson wins Jeopardy! requiring natural language understanding

2015 Deep reinforcement learning algorithms learn to play Atari arcade games from scratch

2016 Google DeepMind's AlphaGo beats Lee Sedol, Korea

2017 AlphaZero learns Go, Chess, and Shogi from scratch (and beats AlphaGo)

Picture is public domain

https://commons.wikimedia.org/wiki/File:Puissance4_01.svg

Photo by A. Yobi Blumberg on Unsplash
https://unsplash.com/photos/22W19M-YsDE

Photo by Emile Perron on Unsplash
https://unsplash.com/photos/_jXn-gNzuGo

Photo by Michał Parzuchowski on Unsplash https://unsplash.com/photos/oT-XbATcoTQ

Photo by Macau Photo Agency on Unsplash https://unsplash.com/photos/as5EWdBWKqk Unsplash pictures are free to use, see https://unsplash.com/license

Considered fair use for and by Wikipedia (https://en.wikipedia.org/ wiki/Blokus). We also consider it fair dealing (Australian equivalent to US's fair use) for illustrating the game in this lecture.

Picture is public domain
https://www.publicdomainpictures.net/en/view-image.php? image=163476\&picture=finished-go-game

By Stuart Russel and Peter Norvig from their book Artificial Intelligence: A Modern Approach (3rd Ed.)
Availble freely for teaching on https://aima.cs.berkeley.edu/

Taken from the YouTube video https://www.youtube.com/watch?v= MGvY3jsLN1I by the channel The Rules Girl. We consider it fair dealing (Australian equivalent to US's fair use) for illustrating the game Tsuro, which is used as assignment for this lecture.

SCORE<1> HI-SCORE SCORER2> 0070 eseo

* $* * * * * * * * * *$

Taken from the YouTube video https://www.youtube.com/watch?v= ziQS8rcT5EA by the channel Board Game Essentials. We consider it fair dealing (Australian equivalent to US's fair use) for illustrating the game Tsuro of the Seas, which is used as assignment for this lecture.

Picture is public domain
https://nl.wikipedia.org/wiki/Checkers

Taken from the YouTube video https://www.youtube.com/watch?v= 67w0QCMr9EY by channel wikipedia tts, licensed under CC BY (https: //creativecommons.org/licenses/by/3.0/legalcode).

Considered fair use for and by Wikipedia (https://en.wikipedia.org/ wiki/Space_Invaders). We also consider it fair dealing (Australian equivalent to US's fair use) for illustrating the game in this lecture.

