Game Playing Al

Guest Lecture in Structured Programming

Pascal Bercher

Many thanks to Stephen Gould! Slides partially build upon his lecture from 2019.

Planning & Optimization Group
College of Engineering and Computer Science
the Australian National University (ANU)

August 21, Semester 2, 2020

Outline for Today

- Motivation: Why Solving Games Automatically Anyways?
- What are Games? (A few Definitions)
- Solving Small Games
 - MiniMax
 - α/β Pruning
- Games with Chance
- Solving Large Games
- Defeating Dragons with AI
- Game Al Success Story

 Game Als for computer games (modern ones or board game adaptations).

- Game Als for computer games (modern ones or board game adaptations).
- Purely for the sake of knowledge!
 E.g., can you always (force a) win in "Connect 4" when you start?

Why Bother? Why Solving Games Automatically?

- Game Als for computer games (modern ones or board game adaptations).
- Purely for the sake of knowledge!
 E.g., can you always (force a) win in "Connect 4" when you start?
- Because many real-world problems can be regarded a game!
 The other player(s) in the game might be other agents or surroundings.

Why Bother? Why Solving Games Automatically?

- Game Als for computer games (modern ones or board game adaptations).
- Purely for the sake of knowledge!
 E.g., can you always (force a) win in "Connect 4" when you start?
- Because many real-world problems can be regarded a game!
 The other player(s) in the game might be other agents or surroundings.
 - Robotics or Multi-Agent-Planning (though this is often cooperative, whereas we take a look at antagonistic games)

- Game Als for computer games (modern ones or board game adaptations).
- Purely for the sake of knowledge!
 E.g., can you always (force a) win in "Connect 4" when you start?
- Because many real-world problems can be regarded a game!
 The other player(s) in the game might be other agents or surroundings.
 - Robotics or Multi-Agent-Planning (though this is often cooperative, whereas we take a look at antagonistic games)
 - Economics! Cf. game theory (look up: Nash Equilibrium and Prisoner's Dilemma)

A **game** consists of a set of one or more **players**, a set of **moves** for the players, and a specification of **payoffs** (outcomes) for each combination of **strategies** (also called policy).

What kinds of restrictions can games have?

3.27

A **game** consists of a set of one or more **players**, a set of **moves** for the players, and a specification of **payoffs** (outcomes) for each combination of **strategies** (also called policy).

What kinds of restrictions can games have?

Perfect information vs. imperfect information

A **game** consists of a set of one or more **players**, a set of **moves** for the players, and a specification of **payoffs** (outcomes) for each combination of **strategies** (also called policy).

What kinds of restrictions can games have?

- Perfect information vs. imperfect information
- (One-player games vs.) Two-player games vs. multi-player games

A **game** consists of a set of one or more **players**, a set of **moves** for the players, and a specification of **payoffs** (outcomes) for each combination of **strategies** (also called policy).

What kinds of restrictions can games have?

- Perfect information vs. imperfect information
- (One-player games vs.) Two-player games vs. multi-player games
- Zero-sum games vs. non-zero-sum games

A **game** consists of a set of one or more **players**, a set of **moves** for the players, and a specification of **payoffs** (outcomes) for each combination of **strategies** (also called policy).

What kinds of restrictions can games have?

- Perfect information vs. imperfect information
- (One-player games vs.) Two-player games vs. multi-player games
- Zero-sum games vs. non-zero-sum games
- Games with chance (randomness) vs. games without chance

What's a Strategy?

A **strategy** defines a complete plan of action for a given player.

Given enough processing time an **optimal strategy** can be found for games of **perfect information** by enumerating paths of a **game tree**. However, in practice this can only be done for small games.

What are we Looking For?

What are we looking for?

Game AI (strategy) vs. game theoretic outcome!

What's the game theoretic outcome?

- The outcome of the game assuming all players play rational.
- Rationality = optimization of expected reward.
- Outcome is known? → The respective game is "solved".

ation Games? Solving Small Games Games with Chance Solving Large Games Defeating Dragons with AI Game AI Success Story

OO● ○○○○○○○○

OO

What are we Looking For?

What are we looking for?

- Game AI (strategy) vs. game theoretic outcome!
- Just because we have an AI that beats all humans, it doesn't mean the game is solved!

What's the game theoretic outcome?

- The outcome of the game assuming all players play rational.
- Rationality = optimization of expected reward.
- Outcome is known? → The respective game is "solved".

·00000000

Using search to solve a game:

- If the game tree is "sufficiently small" we can search in it to find and extract a strategy.
- But we still need to do that efficiently!

MiniMax — How to Solve Small Games?

Using search to solve a game:

- If the game tree is "sufficiently small" we can search in it to find and extract a strategy.
- But we still need to do that efficiently!

Consider two players, MAX and MIN. MAX tries to maximize his/her own score, and player MIN tries to minimize it.

We assume that the players are rational.

MiniMax — The MiniMax Algorithm

The MiniMax algorithm allows each player to compute their optimal move on a game tree of alternating MAX and MIN nodes.

The value of a node is the payoff for a game that is played optimally from that node until the end of the game.

```
\begin{array}{l} \textbf{max-value}(s) \\ \textbf{if } \textit{state s is a leaf then} \\ & \_ \textbf{return payoff}(s) \\ v := -\infty \\ \textbf{forall } \textit{successor states s' of s do} \\ & \_ v := \max{\{v, \min\text{-value}(s')\}} \\ \textbf{return } v \end{array}
```

```
\begin{array}{l} \textbf{min-value}(s) \\ \textbf{if } \textit{state } s \textit{ is a leaf then} \\ & \sqsubseteq \textit{return payoff}(s) \\ v := \infty \\ \textbf{forall } \textit{successor states } s' \textit{ of } s \textit{ do} \\ & \sqsubseteq v := \min \left\{ v, \max\text{-value}(s') \right\} \\ \textbf{return } v \end{array}
```


MAX player plays X, MIN plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

Max

MAX player plays X, MIN plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MAX player plays X, MIN plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MAX player plays X, MIN plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MAX player plays X, MIN plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MAX player plays X, MIN plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MAX player plays X, MIN plays O. Outcomes (black boxes) are from the perspective of the MAX player (i.e., 1 is a win, -1 a loss, 0 a draw).

MiniMax — Space and Time Complexities

What is the runtime of MiniMax?

- Time: All nodes have to be visited! How many are there?
- Assume each game ends after d moves (tree depth).
 Each player has at most b moves (branching factor)

Pascal Bercher

9.27

MiniMax — Space and Time Complexities

What is the runtime of MiniMax?

- Time: All nodes have to be visited! How many are there?
- Assume each game ends after d moves (tree depth).
 Each player has at most b moves (branching factor)
- \rightarrow Runtime is in $O(b^d)$ (exponential!)

MiniMax — Space and Time Complexities

What is the runtime of MiniMax?

- Time: All nodes have to be visited! How many are there?
- Assume each game ends after d moves (tree depth).
 Each player has at most b moves (branching factor)
- \rightarrow Runtime is in $O(b^d)$ (exponential!)

What is the space requirement of MiniMax?

• We perform a depth-first search!

What is the runtime of MiniMax?

- Time: All nodes have to be visited! How many are there?
- Assume each game ends after d moves (tree depth).
 Each player has at most b moves (branching factor)
- \rightarrow Runtime is in $O(b^d)$ (exponential!)

What is the space requirement of MiniMax?

- We perform a depth-first search!
- So only the longest path needs to be stored.
- \rightarrow Space is in $O(b \cdot d)$ (linear)

 α/β Pruning — Can we do better?

- MiniMax suffers from the problem that the number of game states it has to examine is always exponential in the number of moves.
- α/β pruning is a method for reducing the number of nodes that need to be evaluated by only considering nodes that may be reached in game play.
- Alpha-beta pruning places bounds on the values appearing anywhere along a path:
 - ullet lpha is the best (highest) value found so far for MAX
 - β is the best (lowest) value found so far for MIN
 - α and β propagate down the game tree. ν propagates up the game tree.

Keep in mind:

- α is the best value found so far for MAX, initialize with $-\infty$.
- β is the best value found so far for MIN, initialize with ∞ .

```
\begin{aligned} & \text{max-value}(s,\alpha,\beta) \\ & \text{if } \textit{state } s \textit{ is } a \textit{ leaf } \text{ then} \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

```
\begin{array}{l} \mbox{min-value}(s,\alpha,\beta) \\ \mbox{if state $s$ is a leaf then} \\ \mbox{ return payoff}(s) \\ \mbox{$v:=\infty$} \\ \mbox{forall $successor$ states $s'$ of $s$ do} \\ \mbox{ $v:=\min\{v,\max\text{-value}(s',\alpha,\beta)\}$} \\ \mbox{if $v\leq\alpha$ then} \\ \mbox{ return $v$} \\ \mbox{ $\beta:=\min\{\beta,v\}$} \\ \mbox{return $v$} \end{array}
```


Pascal Bercher 11.27

12.27

Start with $\alpha = -1$ (rather than $-\infty$) and $\beta = 1$ (rather than ∞)

(1)
$$v = -\infty \text{ (or } -1)$$

$$\alpha = -1, \beta = 1$$

$$0 \mid x \mid x$$

Max

Pascal Bercher

13.27

Start with $\alpha = -1$ (rather than $-\infty$) and $\beta = 1$ (rather than ∞)

MIN

Max

Start with $\alpha = -1$ (rather than $-\infty$) and $\beta = 1$ (rather than ∞)

Pascal Bercher 13.27

Start with $\alpha = -1$ (rather than $-\infty$) and $\beta = 1$ (rather than ∞)

Start with $\alpha = -1$ (rather than $-\infty$) and $\beta = 1$ (rather than ∞)

Start with $\alpha = -1$ (rather than $-\infty$) and $\beta = 1$ (rather than ∞)

Start with $\alpha = -1$ (rather than $-\infty$) and $\beta = 1$ (rather than ∞)

 α/β Pruning — Space and Time Complexities

What is the runtime (and space requirements) of α/β pruning?

- In the worst case: identical to MiniMax! If nothing can be pruned.
- On average: Complexities omitted. (Due to lack of time.)
- This can happen depending on the order in which edges are traversed/payoffs are discovered.
- In practice, it is very unlikely that no pruning occurs, so *always* choose α/β pruning over MiniMax!

Pascal Bercher

14.27

- A random decision can be regarded as the move of yet another player!
- Certainly that's not another MAX player! I.e, the "environment" (the random decision) will not always play in our favor!
- But what is it. then?
 - Another MIN player? (Too pessimistic...)
 - If we want to play *rational*, we maximize the expectation! value(s) = $P(s') \cdot value(s')$ successor states s' of s

Illustration For a 2-Player Game With Throwing Two Dice, Counting Their Sum

When is using MiniMax and α/β Pruning still feasible?

- Recall that the complexity of MiniMax (and α/β !) is exponential! I.e., in $O(b^d)$, with
 - b, the branching factor (available moves per state)
 - d, the depth (number of moves until game ends)

When is using MiniMax and α/β Pruning still feasible?

- Recall that the complexity of MiniMax (and α/β !) is exponential! I.e., in $O(b^d)$, with
 - b, the branching factor (available moves per state)
 - d, the depth (number of moves until game ends)
- For some games that is simply too large!
- So, let's take a look at some examples...

The "Size" of Games: Tic Tac Toe

Examples for (estimated) number of reachable (game) states:

(Source: https://en.wikipedia.org/wiki/Game_complexity)

The "Size" of Games: Tic Tac Toe

Examples for (estimated) number of reachable (game) states:

(Source: https://en.wikipedia.org/wiki/Game_complexity)

Rough maximum: 3⁹ = 19,683 (including invalid states)

The "Size" of Games: Tic Tac Toe

Examples for (estimated) number of reachable (game) states:

(Source: https://en.wikipedia.org/wiki/Game_complexity)

- Rough maximum: $3^9 = 19,683$ (including invalid states)
- Actual maximum: 5, 478

Examples for (estimated) number of reachable (game) states:

(Source: https://en.wikipedia.org/wiki/Game_complexity)

- Rough maximum: 3⁹ = 19,683 (including invalid states)
- Actual maximum: 5,478
- Maximum after duplicating symmetries: 765

Examples for (estimated) number of reachable (game) states:

(Source: https://en.wikipedia.org/wiki/Game_complexity)

- Rough maximum: 3⁹ = 19,683 (including invalid states)
- Actual maximum: 5, 478
- Maximum after duplicating symmetries: 765
- There are still 26, 830 possible games!
 (For those states with eliminated duplicates.)
 What's a "game"?
 A path in the MiniMax tree!

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Connect_Four)

- Rough maximum: $3^{7.6} < 1.110^{20}$ (including invalid states)
- Actual maximum: 4, 531, 985, 219, $092 \approx 4.5 \cdot 10^{12}$ (still including symmetries)
- First solved, independently, by James Dow Allen (October 1, 1988), and Victor Allis (October 16, 1988).
- Note that today it can also be solved using α/β pruning!

The "Size" of Games: Blokus

Examples for (estimated) number of reachable (game) states: (Source: by Stephen Gould, previous year(s))

approximatelty 58 moves, not all symmetries eliminated

Pascal Bercher 20.27

The "Size" of Games: Blokus

Examples for (estimated) number of reachable (game) states:

(Source: by Stephen Gould, previous year(s))

approx. 2 · 58 moves, symmetries as before

approx. 116 moves, symmetries as before

Examples for (estimated) number of reachable (game) states:

(Source: by Stephen Gould, previous year(s))

The "Size" of Games: Chess

Examples for (estimated) number of reachable (game) states:
(Source: https://en.wikipedia.org/wiki/Shannon_number)

- Some maximum: 5 ⋅ 10⁵²
- Lower limit on game tree size: 10¹²³
- More conservative estimate on lower limit of game tree size, eliminating obvious bad moves: 10⁴⁰

Examples for (estimated) number of reachable (game) states:

(Source: https://en.wikipedia.org/wiki/Shannon_number)

- Legal positions: 2.08168199382 · 10¹⁷⁰
- Lower limit on number of games: 10^(10⁴⁸)
- Upper limit on number of games: 10^(10¹⁷¹)

Pascal Bercher

22.27

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and *estimate* their payoff!

How to deal with large games?

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff! But how?
 - hand-crafted heuristics

Black to move

Title: Artificial Intelligence: A Modern Approach (3rd Ed.)

Authors: Stuart Russel and Peter Norvig

URL: https://aima.cs.berkeley.edu/

Estimate per piece:

pawn: 1 pt

knight/bishop: 3 pts

rook: 5 ptsqueen: 9 pts

Estimate: Black: 7 pts versus White: 6 pts

→ Black leading! (Only very slightly.)

Pascal Bercher 23.27

How to deal with large games?

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff! But how?
 - hand-crafted heuristics
 - learned heuristics

Machine learning techniques are often used to find a good static evaluation function based on a linear combination of features:

$$\hat{v}(s) = w_1 f_1(s) + \cdots + w_n f_n(s)$$

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff! But how?
 - hand-crafted heuristics
 - learned heuristics

Machine learning techniques are often used to find a good static evaluation function based on a linear combination of features:

$$\hat{v}(s) = w_1 f_1(s) + \cdots + w_n f_n(s)$$

Note the similarity to chess!

- $w_1 = 1$, $f_1(s) =$ number of pawns in s
- $w_2 = 3$, $f_2(s) =$ number of knights/bishops in s

So, what to do for (too) large games?

- Don't compute the entire game tree!
- Stop at certain nodes and estimate their payoff! But how?
 - hand-crafted heuristics
 - learned heuristics
 - simulate a game, use the outcome as estimate

Monte-Carlo Tree Search is a well-known algorithm exploiting this idea. It works in four phases:

- Selection (select a non-terminal leaf based on current strategy)
- Expansion (expand the selected node)
- Simulation (play a random game to the end)
- Backpropagation (use the outcome to update strategy)

Interested? See, e.g.,

https://www.youtube.com/watch?v=UXW2yZnd17U (15:30, lecture by Dr. John Levine from Univ. of Strathclyde)

When to use heuristics?

 In standard MiniMax or alpha/beta pruning, we make a terminal test to obtain the payoff, or continue expanding. With heuristics, we instead make a cut-off test to check whether we should stop expansion and estimate the payoff of the current node.

- In standard MiniMax or alpha/beta pruning, we make a terminal test to obtain the payoff, or continue expanding. With heuristics, we instead make a cut-off test to check whether we should stop expansion and estimate the payoff of the current node.
- What about using a fixed depth as cut-off test? → Suffers from the horizon problem:

Black to move

Title: Artificial Intelligence: A Modern Approach (3rd Ed.)

Authors: Stuart Russel and Peter Norvig

URL: https://aima.cs.berkeley.edu/

White can promote a pawn into a queen on his next move! So the cut-off test should be negative in this state.

But let's start with Tsuro, the "underlying game mechanics".

Figure: YouTube video: https://www.youtube.com/watch?v=MGvY3jsLN1I (1:25) Code: M-G-v-Y-3-j-s-L-N-1(one)-I(capital-i)

Pascal Bercher 25.27

Tsuro of the Seas: Ultra-short introduction

Figure: YouTube video: https://www.youtube.com/watch?v=ziQS8rcT5EA (we just take a glance from 5:04 to 5:58) Code: z-i-Q-S-8-r-c-T-5-E-A

Regarding the game rules: Please stick to the ones officially provided by Steve Blackburn!

1959 Arthur Samuel develops Checkers playing program

- 1959 Arthur Samuel develops Checkers playing program
- 1997 IBM's Deep Blue chess machine beats Garry Kasparov

- 1959 Arthur Samuel develops Checkers playing program
- 1997 IBM's Deep Blue chess machine beats Garry Kasparov
- 2007 Checkers solved by University of Alberta

- 1959 Arthur Samuel develops Checkers playing program
- 1997 IBM's Deep Blue chess machine beats Garry Kasparov
- 2007 Checkers solved by University of Alberta
- 2011 IBM's Watson wins Jeopardy! requiring natural language understanding

- 1959 Arthur Samuel develops Checkers playing program
- 1997 IBM's Deep Blue chess machine beats Garry Kasparov
- 2007 Checkers solved by University of Alberta
- 2011 IBM's Watson wins Jeopardy! requiring natural language understanding
- 2015 Deep reinforcement learning algorithms learn to play Atari arcade games from scratch

27.27

- 1959 Arthur Samuel develops Checkers playing program
- 1997 IBM's Deep Blue chess machine beats Garry Kasparov
- 2007 Checkers solved by University of Alberta
- 2011 IBM's Watson wins Jeopardy! requiring natural language understanding
- 2015 Deep reinforcement learning algorithms learn to play Atari arcade games from scratch
- 2016 Google DeepMind's AlphaGo beats Lee Sedol, Korea

- 1959 Arthur Samuel develops Checkers playing program
- 1997 IBM's Deep Blue chess machine beats Garry Kasparov
- 2007 Checkers solved by University of Alberta
- 2011 IBM's Watson wins Jeopardy! requiring natural language understanding
- 2015 Deep reinforcement learning algorithms learn to play Atari arcade games from scratch
- 2016 Google DeepMind's AlphaGo beats Lee Sedol, Korea
- 2017 AlphaZero learns Go, Chess, and Shogi from scratch (and beats AlphaGo)

Picture is public domain

https://commons.wikimedia.org/wiki/File:Puissance4_01.svg

Photo by A. Yobi Blumberg on Unsplash https://unsplash.com/photos/22W19M-YsDE

Photo by Emile Perron on Unsplash https://unsplash.com/photos/_jXn-gNzuGo

Photo by Michał Parzuchowski on Unsplash https://unsplash.com/photos/oT-XbATcoTQ

Photo by Macau Photo Agency on Unsplash https://unsplash.com/photos/as5EWdBWKqk

Unsplash pictures are free to use, see https://unsplash.com/license

Considered *fair use* for and by Wikipedia (https://en.wikipedia.org/wiki/Blokus). We also consider it *fair dealing* (Australian equivalent to US's fair use) for illustrating the game in this lecture.

Picture is *public domain*

https://www.publicdomainpictures.net/en/view-image.php?image=163476&picture=finished-go-game

By Stuart Russel and Peter Norvig from their book *Artificial Intelligence: A Modern Approach (3rd Ed.)* Availble freely for teaching on https://aima.cs.berkeley.edu/

Black to move

Taken from the YouTube video https://www.youtube.com/watch?v=MGvY3jsLN1I by the channel *The Rules Girl.* We consider it *fair dealing* (Australian equivalent to US's fair use) for illustrating the game Tsuro, which is used as assignment for this lecture.

Taken from the YouTube video https://www.youtube.com/watch?v=ziQS8rcT5EA by the channel *Board Game Essentials*. We consider it *fair dealing* (Australian equivalent to US's fair use) for illustrating the game Tsuro of the Seas, which is used as assignment for this lecture.

Picture is *public domain*

https://nl.wikipedia.org/wiki/Checkers

Taken from the YouTube video https://www.youtube.com/watch?v=67wOQCMr9EY by channel *wikipedia tts*, licensed under CC BY (https://creativecommons.org/licenses/by/3.0/legalcode).

Considered *fair use* for and by Wikipedia (https://en.wikipedia.org/wiki/Space_Invaders). We also consider it *fair dealing* (Australian equivalent to US's fair use) for illustrating the game in this lecture.

3.3