
Structured Programming 1110/1140/6710

Review

“80 percent of success is showing up”

Woody Allen

• Introduction

8

“You can know the name of a bird in all the languages of

the world, but when you're finished, you'll know absolutely

nothing whatever about the bird... So let's look at the bird

and see what it's doing -- that's what counts. I learned

very early the difference between knowing the name of

something and knowing something.”

Richard Feynman

(C01) Recursion

Clarify key ideas in recursion

Structured Programming 1110/1140/6710

Recursive Algorithms

Recursion

Structured Programming 1110/1140/6710

Recursive Algorithms

A recursive algorithm references itself.

A recursive algorithm is comprised of:
• one or more base cases
• a remainder that reduces to the base case/s

14

Recursion C1

Structured Programming 1110/1140/6710

Example: Fibonacci sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377…

fib(0) = 1 (base case)

fib(1) = 1 (base case)

fib(n) = fib(n-1) + fib(n-2) (for n ≥ 2)

15

Recursion

8
5

3 2
1 1

C1

Structured Programming 1110/1140/6710

Sort a list
• List of size 1 (base case)

– Already sorted
• List of size > 1

– Split into two sub lists
– Sort each sub list (recursion)

– Merge the two sorted sub lists into
one sorted list (by iteratively picking
the lower of the two least elements)

16

Recursion

Example: Mergesort (von Neumann, 1945)

C1

Animation: Visualizing Algorithms, Mike Bostock, bost.ocks.org/mike/algorithms

Structured Programming 1110/1140/6710 17

Recursion

Example: Mergesort (von Neumann, 1945)

C1

(C02) Hash Functions

I would like a recap of hashing

Structured Programming 1110/1140/6710

Hash functions
Choosing a good hash function

Hash Functions

Structured Programming 1110/1140/6710

Hash Functions

A hash function is a function f(k) that maps a key, k, to a value, f(k),
within a prescribed range.

A hash is deterministic. (For a given key, k, f(k) will always be the same).

20

Hash Functions C2

Structured Programming 1110/1140/6710

Choosing a Good Hash Function

A good hash for a given population, P, of keys, k∈ P, will distribute f(k)
evenly within the prescribed range for the hash.

A perfect hash will give a unique f(k) for each k∈ P

21

Hash Functions C2

Structured Programming 1110/1140/6710

Java hashCode()
Uses of Hashing

Hashing Applications

Structured Programming 1110/1140/6710

Java hashCode()

Java provides a hash code for every object
• 32-bit signed integer
• Inherited from Object, but may be overwritten
• Objects for which equals() is true must also have the same
hashCode().

• The hash need not be perfect (i.e. two different objects may share
the same hash).

23

Hashing Applications

839-857

C3

Structured Programming 1110/1140/6710

Uses of Hashing

• Hash table (a map from key to value)
• Pruning a search

– Looking for duplicates
– Looking for similar values

• Compression
– A hash is typically much more compact that the key

• Correctness
– Checksums can confirm inequality

24

Hashing Applications C3

Structured Programming 1110/1140/6710

Practical Examples…

Luhn Algorithm
Used to check for transcription errors
in credit cards (last digit checksum).

25

Hashing Applications

Hamming Codes
Error correcting codes (as

used in EEC memory)

C3

Structured Programming 1110/1140/6710

Practical Examples…

rsync (Tridgell)
Synchronize files by (almost) only
moving the parts that are different.

26

Hashing Applications

MD5 (Rivest)
Previously used to encode
passwords (but no longer).

C3

(A05) Trees (A06) Maps

I would like a recap of Tree and Map ADT

Structured Programming 1110/1140/6710

The Tree ADT
Implementation of a Set 2

Abstract Data Types:
Trees

Structured Programming 1110/1140/6710

The Tree ADT

29

The tree ADT corresponds to a mathematical tree. A tree is defined
recursively in terms of nodes:
• A tree is a node
• A node contains a value and a list of trees.
• No node is duplicated.

A5Abstract Data Types: Trees

Structured Programming 1110/1140/6710

Binary Search Tree

A binary search tree is a tree with the following additional properties:
• Each node has at most two sub-trees
• Nodes may contain (key, value) pairs (or just keys)
• Keys are ordered within the tree:

– The left sub-tree only contains keys less than the node’s key
– The right sub-tree only contains keys greater than the node’s key

30

A5Abstract Data Types: Trees

Structured Programming 1110/1140/6710 31

Abstract Data Types: Trees A5

orange

apple

pear

apricot peachmango plum

grape

cherry

banana

fruit
apple

orange

banana

pear apricot

peachmango

plum
cherry

grape

Structured Programming 1110/1140/6710 32

Abstract Data Types: Trees A5

orange

apple

pear

plum

grape

cherry

mango peachapricot

banana

fruit

appleorangebananapearapricotpeachmangoplumgrapecherry

Structured Programming 1110/1140/6710 33

Abstract Data Types: Trees A5

orange

apple

pear

plum

grape

cherry

mango peachapricot

banana

fruit

fruit.contains(“orange”)fruit.contains(“grape”)fruit.contains(“fig”) ✓

✓✗

Structured Programming 1110/1140/6710 34

Abstract Data Types: Trees A5

orange

apple

pear

grape

cherry

mango peachapricot

banana

fruit

fruit.remove(“grape”)fruit.remove(“pear”)fruit.add(“strawberry”)
???

plum

Structured Programming 1110/1140/6710 35

Abstract Data Types: Trees A5

orange

apple

pear

grape

cherry

mango peachapricot

banana

fruit

fruit.remove(“grape”)fruit.remove(“pear”)fruit.add(“strawberry”)
???

plum

Structured Programming 1110/1140/6710 36

Abstract Data Types: Trees A5

orange

apple

pear

grape

cherry

mango peachapricot

banana

fruit

fruit.remove(“grape”)fruit.remove(“pear”)

plum

Structured Programming 1110/1140/6710

The Map ADT
A Map interface and its implementation
ADT Recap

Abstract Data Types:
Maps

Structured Programming 1110/1140/6710

ADT Recap

38

Abstract Data Types: Maps

First-principles implementation of three Java container types:
• List

– ArrayList, LinkedList implementations (A1, A2)

• Set
– HashSet, BSTSet implementations (A3, A4, A5)

• Map
– HashMap, BSTMap implementations (A6)

Introduced hash tables, trees (A4, A5)

A6

Structured Programming 1110/1140/6710

The Map ADT (A.K.A. Associative Array)

39

Abstract Data Types: Maps

A map consists of (key, value) pairs
• Each key may occur only once in the map
• Values are retrieved from the map via the key
• Values may be modified
• Key, value pairs may be removed

A6

Structured Programming 1110/1140/6710

Our Map Interface

40

Abstract Data Types: Maps

We will explore maps using an interface with the
following methods:

public void put(K key, V value);
public V get(K key);
public void remove(K key);
public int size();
public String toString();

A6

Structured Programming 1110/1140/6710

fruit

41

Abstract Data Types: Maps A6

orange

apple banana

pear

apricot

peach

mango

plum

grape

cherry

a-f

g-m

n-t

u-z

3.50 2.50 5.50 12.00

11.25 7.00

4.00 4.00 6.00 4.50

fruit.get(“apricot”)fruit.put(“grape”, 7.00)fruit.put(“orange”, 3.50)

5.50orangeapricotgrape

3.50

Structured Programming 1110/1140/6710 42

Abstract Data Types: Maps A6

orange

apple

pear

plum

grape

cherry

mango peachapricot

banana

fruit

3.50

2.50

5.50

12.00

11.25

7.00

4.00

4.00

4.506.00

fruit.get(“apricot”)fruit.put(“grape”, 7.00)fruit.put(“orange”, 3.50)

5.50

3.50

(O01) Object Orientation

What is the advantage of object orientation?

(J01) Imperative Programming Languages

Imperative v functional.

Can they solve the same problems?

Structured Programming 1110/1140/6710

Imperative programming languages
Java Standard Library
Types
Hello World

Introductory Java 1

Structured Programming 1110/1140/6710

Introductory Java J1

46

Structured Programming 1110/1140/6710

Why Java?

• Learn multiple programming paradigms
• Important example of:

– Object-oriented programming
– Large scale programming
– Programming with a rich standard library

Introductory Java J1

47

Structured Programming 1110/1140/6710

Imperative Programming Languages

Introductory Java J1

Programming
Languages

Declarative

Functional Logic
Programming

Imperative

Procedural

Object
Oriented

Pure
functional
languages, like
Haskell, will
only transform
state by using
functions

Object-
oriented
languages use
structured
(procedural)
code, tightly
coupling data

Declarative
languages
describe the
desired result
without
explicitly listing
steps required
to achieve that
goal.

Imperative
languages
describe
computation in
terms of a
series of
statements that
transform state.

48

Structured Programming 1110/1140/6710

Imperative Programming Languages

Introductory Java J1

49

• Sequence
• Selection
• Iteration

Object Oriented Programming Languages
• Structured code
• Code (behavior) tightly coupled with data (state) that it manipulates

(O03) Interfaces (O05) Abstract Classes

Please explain the “power” and “goodness” of Java
interfaces and abstract classes.
w.r.t. software architecture, programming, and utility.

Structured Programming 1110/1140/6710

Interfaces

Structured Programming 1110/1140/6710

Interfaces
An interface can be thought of as a contract.
A class which implements an interface must provide the specified
functionality. Compared to a class, an interface:
• Uses interface keyword rather than class
• Cannot be instantiated (can’t be created with new)
• Can only contain constants, method signatures (not the bodies),

nested types
– (Java 8 allows default and static methods)

• Classes implement interfaces via implements keyword

311-343 193-230 52

O3Interfaces

Structured Programming 1110/1140/6710

Interfaces as Types
An interface can be used as a type
• A variable declared with an interface type can hold a reference to a

object of any class that implements that interface.

332 222 53

O3Interfaces

Structured Programming 1110/1140/6710

java.lang.Object
Final classes, methods and fields
Abstract classes and methods

Inheritance 2

Structured Programming 1110/1140/6710

Object as superclass
In Java all classes ultimately inherit from one root class:
java.lang.Object. Implemented methods:
• clone() returns copy of object
• equals(Object obj) establishes equivalence
• finalize() called by GC before reclaiming
• getClass() returns runtime class of the object
• hashCode() returns a hash code for the object
• toString() returns string representation of object

241 204 55

O5Inheritance 2

Structured Programming 1110/1140/6710

Final Classes and Methods
The final keyword in a class declaration states that the class may
not be subclassed.

The final keyword in a method declaration states that the method
may not be overridden.

267-270 185 56

Inheritance 2 O5

Structured Programming 1110/1140/6710

Abstract Classes and Methods
The abstract keyword in a class declaration states that the class is
abstract, and therefore cannot be instantiated (its subclasses may
be, if they are not abstract).

The abstract keyword in a method declaration states that the
method declaration is abstract; the implementation must be provided
by a subclass.

311-312 196 57

O5Inheritance 2

(C4) Files

What is the important syntax for Files?

(C7) Threads

Can you explain why synchronized was necessary in the in-
lecture example?

