
Structured Programming 1110/1140/6710

Classes and Objects 1

Class declaration

Object creation

Structured Programming 1110/1140/6710

O1

Creating Classes and Objects

The following slides describe the mechanics of creating a class and

creating objects (instances of that class) in Java.

Some of the mechanics will not make much sense until later when

the relevant concepts are explained. For now, treat these as

boilerplate (stuff you ‘just do’).

32

Classes and Objects 1

Structured Programming 1110/1140/6710

Class Declaration

A class declaration will have the following, in order:

• Any modifiers (public, private, etc.)

• The keyword class

• The class’ name (first letter capitalized)

• Optional superclass’ name preceded by extends

• Optional list of interfaces preceded by implements

• The class body surrounded by braces {}

33

Classes and Objects 1 O1

Structured Programming 1110/1140/6710

Member Variable Declaration

Three kinds:

• Class and instance variables, called fields

• Variables within a method, called local variables

• Method arguments, called parameters

Member variables will have the following, in order:

• Any modifiers (public, private, etc.)

• The field’s type

• The field’s name

34

Classes and Objects 1 O1

Structured Programming 1110/1140/6710

Constructors

A constructor is a special method that is automatically executed

when an instance is created.

Constructors differ from normal methods:

• They have no return type.

• They have the same name as the class.

If no constructor is provided, the compiler will automatically call the

constructor for the class’ superclass

35

Classes and Objects 1 O1

Structured Programming 1110/1140/6710

Creating Objects

A statement creating an object has three parts:

• Declaration (a referring variable and type)

• Instantiation (the new keyword)

• Initialization (call to constructor)

36

Classes and Objects 1 O1

Structured Programming 1110/1140/6710

Using Objects

Outside a class, an object reference followed by the dot ‘.’ operator
must be used:

• Reference the object’s fields
– Object reference, ‘.’, field name

• Call the object’s methods
– Object reference, ‘.’, method name, arguments in parentheses (‘(’ ‘)’)

Within instance methods, the object’s fields and methods can be

accessed directly by name, (optionally with the this keyword).
– fieldName or methodName()

– this.fieldName or this.methodName()

37

Classes and Objects 1 O1

Structured Programming 1110/1140/6710

Classes and Objects 2

Locals, globals, heap

Garbage collection

Initializers, access control

enum types

Structured Programming 1110/1140/6710

Locals (stack), Globals (statics), and Heap (objects)

Local variables are declared within the scope of a method and hold

temporary state. They disappear once the method returns.

Global variables (a.k.a. ‘class variables’) are declared within the
scope of a class (with a static qualifier), and exist as long as the

class is loaded (which is usually for the duration of the program).

Heap variables (a.k.a. ‘instance variables’) are declared within the
scope of a class (without a static qualifier), and exist as long as the

containing instance is reachable.

9

O2Classes and Objects 2

Structured Programming 1110/1140/6710

Garbage Collection

In some object oriented languages, the programmer must keep track

of objects and delete them when they are no longer used.

This is error-prone.

Java uses a garbage collector to automatically collect objects that

can no longer be used. Garbage collection approximates liveness

by reachability (the collector conservatively assumes that any

reachable object is live).

10

O2Classes and Objects 2

Structured Programming 1110/1140/6710

The this keyword

Within instance methods and constructors, the this keyword refers

to the object whose method or constructor is being called.

• Disambiguating field names from parameters

– Parameters and instance field names may clash. The this keyword

explicitly refers to the instance.

• Calling other constructors

– When there are multiple constructors, they may call each other using
this as if it were the method name.

11

O2Classes and Objects 2

Structured Programming 1110/1140/6710

Access Control

Access modifiers determine whether fields and methods may be

accessed by other classes

• Top level: public or package-private

• Member level: public, protected, package-private, or private

Modifier Class Package Subclass World

public ✓ ✓ ✓ ✓
protected ✓ ✓ ✓ ✗
no modifier ✓ ✓ ✗ ✗

private ✓ ✗ ✗ ✗
12

O2Classes and Objects 2

Structured Programming 1110/1140/6710

Class and Instance Members

The static keyword identifies class variables, class methods and

constants.

• A class variable is common to all objects (there is only one

version)

• A class method is invoked using a class name (not an object

reference) and executes independently of any particular object.

• A constant can be declared by combining the final modifier with

the static keyword.

13

O2Classes and Objects 2

Structured Programming 1110/1140/6710

Initializers

Fields may be initialized when they are declared. They can also be

initialized by initializer blocks, which can initialize fields using

arbitrarily complex code (error handling, loops, etc.).

• A static initializer block is consists of code enclosed by braces
‘{}’and preceded by the static keyword. It runs when the class is

first accessed.

• A instance initializer block does not have the static keyword, and

runs before the constructor body of the class.

14

O2Classes and Objects 2

Structured Programming 1110/1140/6710

Enum Types

An enumerated type is defined with the enum keyword.

A variable of enum type must be one of a set of predefined values.
This is useful for defining non-numerical sets such as NORTH, SOUTH,

EAST, WEST, or HD, D, CR, P, N, etc.

• May have other fields

• May have methods

• May use constructors

• Can be used as argument to iterators

15

O2Classes and Objects 2

Structured Programming 1110/1140/6710

Interfaces

Structured Programming 1110/1140/6710

Interfaces

An interface can be thought of as a contract.

A class which implements an interface must provide the specified

functionality. Compared to a class, an interface:

• Uses interface keyword rather than class

• Cannot be instantiated (can’t be created with new)

• Can only contain constants, method signatures (not the bodies),

nested types

– (Java 8+ allows default and static methods)

• Classes implement interfaces via implements keyword

311-343 193-230 10

O3Interfaces

Structured Programming 1110/1140/6710

Interfaces as Types

An interface can be used as a type

• A variable declared with an interface type can hold a reference to a

object of any class that implements that interface.

332 222 11

O3Interfaces

Introduction to Software Systems 1110/1140/1510/6710

Inheritance

Overriding and hiding

Polymorphisim

The super keyword

22

Inheritance 1 O4

Introduction to Software Systems 1110/1140/1510/6710

Inheritance

An inherited class is known as a subclass, derived class, or child

class. Its parent is known as a superclass, base class, or parent

class.

•  Subclasses inherit via the extends keyword

•  All classes implicitly inherit from java.lang.Object

36 30 23

O4 Inheritance 1

Introduction to Software Systems 1110/1140/1510/6710

Overriding and Hiding Methods

•  Instance methods

–  If method has same signature as one in its superclass, it is said to override.

Mark with @Override annotation.

–  Same name, number and type of parameters, and return type as overridden

parent method.

–  The type of the instance determines the method

•  Class methods

–  If it has same signature, it hides the superclass method

–  The class with respect to which the call is made determines the method

255 30 24

O4 Inheritance 1

Introduction to Software Systems 1110/1140/1510/6710

Polymorphism

A reference variable may refer to an instance that has a more

specific type than the variable.

The method that is called depends on the type of the instance, not

the type of the reference variable.

38-39 181 25

O4 Inheritance 1

Introduction to Software Systems 1110/1140/1510/6710

Hiding Fields

When a subclass uses a field name that is already used by a field in

the superclass, the superclass’ field is hidden from the subclass.

Hiding fields is a bad idea, but you can do it.

26

O4 Inheritance 1

Introduction to Software Systems 1110/1140/1510/6710

The super keyword

You can access overridden (or hidden) members of a superclass by

using the super keyword to explicitly refer to the superclass.

•  A variable declared with an interface type can hold a reference to a

object of any class that implements that interface.

You can call superclass constructors by using super() passing

arguments as necessary.

243 224 27

O4 Inheritance 1

Introduction to Software Systems 1110/1140/1510/6710

java.lang.Object

Final classes, methods and fields

Abstract classes and methods

Inheritance 2 O5

Introduction to Software Systems 1110/1140/1510/6710

Object as superclass

In Java all classes ultimately inherit from one root class:

java.lang.Object. Implemented methods:

•  clone() returns copy of object

•  equals(Object obj) establishes equivalence

•  finalize() called by GC before reclaiming

•  getClass() returns runtime class of the object

•  hashCode() returns a hash code for the object

•  toString() returns string representation of object

241 204 30

O5 Inheritance 2

Introduction to Software Systems 1110/1140/1510/6710

Final Classes and Methods

The final keyword in a class declaration states that the class may

not be subclassed.

The final keyword in a method declaration states that the method

may not be overridden.

267-270 185 31

Inheritance 2

O5

Introduction to Software Systems 1110/1140/1510/6710

Abstract Classes and Methods

The abstract keyword in a class declaration states that the class is

abstract, and therefore cannot be instantiated (its subclasses may

be, if they are not abstract).

The abstract keyword in a method declaration states that the

method declaration is abstract; the implementation must be provided

by a subclass.

311-312 196 32

O5 Inheritance 2

