
Structured Programming 1110/1140/6710

ADTs

The List ADT

A List interface and its implementation: Array List

Abstract Data Types:

Lists 1

Structured Programming 1110/1140/6710

Abstract Data Types (ADTs)

Abstract data types describe the behaviour (semantics) of a data type

without specifying its implementation. An ADT is thus abstract, not

concrete.

A container is a very general ADT, serving as a holder of objects. A

list is an example of a specific container ADT.

An ADT is described in terms of the semantics of the operations that

may be performed over it.

6

Abstract Data Types: Lists A1

Structured Programming 1110/1140/6710

The List ADT

The list ADT is a container known mathematically as a finite

sequence of elements. A list has these fundamental properties:

• duplicates are allowed

• order is preserved

A list may support operations such as these:

• create: construct an empty list

• add: add an element to the list

• is empty: test whether the list is empty

7

Abstract Data Types: Lists A1

Structured Programming 1110/1140/6710

Our List Interface

We will explore lists using a simple interface:

public interface List<T> {

void add(T value);

T get(int index);

int size();

T remove(int index);

void reverse();

}

8

Abstract Data Types: Lists A1

Structured Programming 1110/1140/6710

A B C D

A B CD

A B C D

void add(T value);

T get(int index);

int size();

T remove(int index);

void reverse();

String toString();

9

Abstract Data Types: Lists

A B C D

A B C D

A B C D

C

4

A B CD

D B A

D B A D B A

D

2

2

A1

C

Structured Programming 1110/1140/6710 10

Abstract Data Types: Lists A1

List Implementation

• Arrays

– Fast lookup of any element

– A little messy to grow and contract

• Linked list

– Logical fit to a list, easy to grow, contract

– Need to traverse list to find arbitrary element

