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Recursive Data Structure

A recursive data structure is comprised of components that reference 

other components of the same type.

16

Recursion C1

A B C D

start end

linked list
tree



Structured Programming 1110/1140/6710

Recursive Algorithms

A recursive algorithm references itself.

A recursive algorithm is comprised of:

• one or more base cases

• a remainder that reduces to the base case/s
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Example: Fibonacci sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377…

fib(0) = 1  (base case)

fib(1) = 1  (base case)

fib(n) = fib(n-1) + fib(n-2) (for n ≥ 2)
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Sort a list

• List of size 1 (base case)

– Already sorted

• List of size > 1

– Split into two sub lists

– Sort each sub list (recursion)

– Merge the two sorted sub lists into 

one sorted list (by iteratively picking 

the lower of the two least elements)
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Recursion

Example: Mergesort (von Neumann, 1945)

C1

Animation: Visualizing Algorithms, Mike Bostock, bost.ocks.org/mike/algorithms
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Hash Functions

A hash function is a function f(k) that maps a key, k, to a value, f(k), 

within a prescribed range.

A hash is deterministic. (For a given key, k, f(k) will always be the same).
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Choosing a Good Hash Function

A good hash for a given population, P, of keys, k∈ P, will distribute f(k) 

evenly within the prescribed range for the hash.

A perfect hash will give a unique f(k) for each k∈ P

7
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Java hashCode()

Java provides a hash code for every object

• 32-bit signed integer

• Inherited from Object, but may be overridden

• Objects for which equals() is true must also have the same 

hashCode(). 

• The hash need not be perfect (i.e. two different objects may share 

the same hash).
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Hashing Applications

839-857
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Uses of Hashing

• Hash table (a map from key to value)

• Pruning a search

– Looking for duplicates

– Looking for similar values

• Compression

– A hash is typically much more compact that the key

• Correctness

– Checksums can confirm inequality

18

Hashing Applications C3
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Practical Examples…

Luhn Algorithm
Used to check for transcription errors 

in credit cards (last digit checksum).
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Hashing Applications

Hamming Codes
Error correcting codes (as 

used in EEC memory)

C3
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Practical Examples…

rsync (Tridgell)
Synchronize files by (almost) only 

moving the parts that are different.
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Hashing Applications

MD5 (Rivest)
Previously used to encode 

passwords (but no longer).

C3
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File IO as Streams

A stream is a standard abstraction used for files:

A sequence of values are read.

A sequence of values are written.

The stream reflects the sequential nature of file IO and the physical 

characteristics of the media on which files traditionally reside (e.g. 

tape or a spinning disk).

6
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Java I/O: Byte Streams

The classes InputStream and OutputStream allow you to read and 

write streams of bytes to and from streams including files (subclasses: 
FileInputStream and FileOutputStream).

• Open the stream

• Read or write from the stream (in bytes)

• Wrap operations in a try clause

• Use finally to close the streams

ints are used, even though bytes are transferred(!)
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Files

916-917
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Java I/O: Character Streams

When reading and writing characters, you should use the classes 
Reader and Writer, which allow you to read and write streams of 

characters to and from streams including files (subclasses: 
FileReader and FileWriter).

ints are used, even though chars are transferred.

10

Files

924
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File I/O: Buffering

Reading data one byte at a time is costly.  Buffering is used to absorb 

some of that overhead.

In Java the BufferedReader and BufferedWriter classes can be used 

to buffer data read or written with FileReader and FileWriter.

To be sure that a buffer is flushed, call flush(), or close the file.
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Files

924

C4

Disk: ~10ms   SSD: ~100μs  RAM:  ~10ns     Register:  ~1ns
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Java Command Line IO

Three standard IO streams (globally-defined objects):

• Standard input System.in

• Standard output System.out

• Standard error System.err

byte b = (byte) System.in.read();

System.out.write(b);

System.out.flush();

System.err.write(b);

12

Files
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“New” I/O (java.nio.file)

Java NIO offers simpler, event-driven interface

• Path — replaces java.io.File

• FileSystem — factory class for objects in the filesystem

• WatchService — utility class to detect file system changes 

through event notification

• Files —create, rename, copy, modify attributes and delete files

13

Files

941
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Context

23

Computational Complexity

Key computational resources:

• Time

• Space

• Energy

Computational complexity is the study of how problem size affects 

resource consumption for a given implementation.

• Worst case

– the complexity of solving the problem for the worst input of size n

• Average case

– is the complexity of solving the problem on an average.

C5
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(Computational) Scaling

24

Computational Complexity

1. Identify n, the number that characterizes the problem size.

– Number of pixels on screen

– Number of elements to be sorted

– etc.

2. Study the algorithm to determine how resource consumption 

changes as a function of n.

C5
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Big O Notation
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Computational Complexity

Suppose we have a problem of size n that takes g(n) time to 

execute in the average case.

We say:

g(n) ∈ O(f(n))

if and only if there exists a constant c > 0

and a constant n0 > 0 such that for all n > n0 :

g(n) ≤ c × f(n)

C5
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Simple Examples

26

Computational Complexity

• Constant O(1)

– Time to perform an addition 

• Logarithmic O(log(n))

– Time to find an element in a (balanced) BST

• Linear O(n)

– Time to find an element within a list

• O(n log(n))

– Average time to sort using mergesort

• Quadratic O(n2)

– Time to compare n elements with each other

C5
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Time Complexity: Counting Statements

27

Computational Complexity

Time complexity can estimated by simply counting the number of 

statements to be executed.

• Traps

– Simple statements are constant time

– Library calls may have arbitrary complexity

C5
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Concrete Examples

28

Computational Complexity

Consider hashing into a table of n elements…

public int hash(Integer key, int buckets) {

return key % buckets;

}

Constant time, O(1)

C5
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Concrete Examples

29

Computational Complexity

Consider summing a list of size n…

public int sum(ArrayList<Integer> list) {

int rtn = 0;

for(Integer i: list) {

rtn += i;

return rtn;

}

Linear time, O(n)

C5
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Concrete Examples

30

Computational Complexity

public int minDiff(ArrayList<Integer> values) {

int min = Integer.MAX_VALUE;

for (int i = 0; i < values.size(); i++) {

for (int j = i + 1; j < values.size(); j++) {

int diff = values.get(i)-values.get(j);

if (Math.abs(diff) < min)

min = Math.abs(diff);

}

} 

}

S(N) = 1 + n + 4 ((n – 1) n/2) = 1 + n + 2 n2 – 2n = 2n2 – n + 1 ∈ O(n2)

(n – 1)n/2

(n – 1)n/2

(n – 1)n/2

(n – 1)n/2

n

1

Note: n -1 + n – 2 + … 2 + 1 = (n – 1) n /2

C5
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Formal Grammars

15

Formal languages are distinguished from natural 

languages by their artificial construction (rather than 

natural emergence).

Noam Chomsky is often credited with opening the 

field of formal grammars while studying natural 

languages.

Duncan Rawlinson (Creative Commons)

Noam Chomsky

C6Grammars
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Generative Grammars

16

C6Grammars

Sentence
Sentence = Noun Phrase, Verb Phrase, [Noun Phrase];

Noun = signs, directions, lives

Article = the

Verb = show, matter, look

Adjective = big, small, white, black

Noun Phrase = [Article], [Adjective], Noun | Noun Phrase;

Verb Phrase = Verb, [Noun Phrase];

The signs show the directions.

Small big directions matter the black white signs.

Noun 

Phrase

Verb 

Phrase

Article Noun Verb

the signs show

Article Noun

the directions

Noun 

Phrase
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Generative Grammars

17

C6Grammars

Verb 

Phrase

Sentence

Noun 

Phrase

NounAdjective Verb

Sentence = Noun Phrase, Verb Phrase, [Noun Phrase];

Noun = signs, directions, lives

Article = the

Verb = show, matter, look

Adjective = big, small, white, black

Noun Phrase = [Article], [Adjective], Noun | Noun Phrase;

Verb Phrase = Verb, [Noun Phrase];

The signs show the directions.

Small big directions matter the black white signs.

black lives matter

Syntactically correct productions (sentences) don’t always convey meaning!
E.g. “I tested positively towards negative.”
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Extended Backus-Naur Form

18

EBNF is a standard way of representing 

the syntax of a formal language (but not

the semantics!)

• Terminal symbols

– e.g. characters or strings

• Production rules

– combinations of terminal symbols
Robert McClure 

Niklaus Wirth

Grammars C6



Structured Programming 1110/1140/1510/6710

Extended Backus-Naur Form

19

Very basic syntax of EBNF production rules:

• ‘=’ defines a production rule
• ‘|’ identifies alternates (e.g. ‘1’ | ‘2’ | ‘3’ )

• ‘{’, ‘}’ identify expressions that may occur zero or more times (e.g. ‘1’, { ‘0’ } )

• ‘[’, ‘]’ identify expressions that may occur zero or one time (e.g. ‘1’, [ ‘0’ ])

• ‘,’ identifies concatenation
• ‘-’ identifies exceptions
• ‘(’, ‘)’ identify groups
• ‘;’ terminates a production rule

Grammars C6
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Example EBNF grammar

20

PROGRAM DEMO1

BEGIN

A0:=3;

B:=45;

H:=-100023;

C:=A;

D123:=B34A;

BABOON:=GIRAFFE;

TEXT:="Hello world!";

END.

(* a simple program syntax in EBNF − Wikipedia *)
program = 'PROGRAM', white space, identifier, white space, 

'BEGIN', white space, 

{ assignment, ";", white space }, 

'END.' ;

identifier = alphabetic character, { alphabetic character | digit } ;

number = [ "-" ], digit, { digit } ;

string = '"' , { all characters − '"' }, '"' ;
assignment = identifier , ":=" , ( number | identifier | string ) ;

alphabetic character = "A" | "B" | "C" | "D" | "E" | "F" | "G"

| "H" | "I" | "J" | "K" | "L" | "M" | "N"

| "O" | "P" | "Q" | "R" | "S" | "T" | "U"

| "V" | "W" | "X" | "Y" | "Z" ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

white space = ? white space characters ? ;

all characters = ? all visible characters ? ;

Grammars C6



Structured Programming 1110/1140/1510/6710

Simple EBNF Grammars

21

Grammar for arrangement of characters that are:

• Natural numbers?
natural = ‘0’ | (nzdigit, { digit }) ;
nzdigit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;
digit = ‘0’ | nzdigit ;

• Integers?
integer = ‘0’ | ([‘-’], nzdigit, { digit }) ;

• Decimal numbers?
real = ([‘-’], natural, [(‘.’ { digit }, nzdigit)]) – ‘-0’ ;  

• 24hr time, digital clock?
time = hour, ‘:’, min ;
hour = ( ( ‘0’ | ‘1’ ) , digit ) | ( ‘2’ , ( ‘0’ | ‘1’ | ‘2’ | ‘3’)) ;
min = ( ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ ), digit ;

Grammars C6
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Concurrency, Processes and Threads

• Concurrency

– Multiple activities (appear to) occur simultaneously, (e.g. recording this lecture 

and displaying this slide).

– ‘Time slicing’ allows a single execution unit to give the appearance of 
concurrent execution

• Process

– Distinct execution context that (by default) shares nothing (e.g. IntelliJ, 

PowerPoint, Quicktime recorder)

• Thread

– Intra-process execution context (e.g. IntelliJ’s compiler)

7

Threads C7
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Why Threads?

• ‘Concurrency’
– Separate concerns (e.g. rendering v logic)

– Good for: distinct tasks that naturally occur concurrently

• ‘Parallelism’ (a special case of concurrency)

– Break task into pieces, exploit parallel hardware

– Good for: computationally intensive problems that can be readily partitioned

8

Threads C7


