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Formal languages are distinguished from natural 

languages by their artificial construction (rather than 

natural emergence).

Noam Chomsky is often credited with opening the 

field of formal grammars while studying natural 

languages.

Duncan Rawlinson (Creative Commons)

Noam Chomsky
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Sentence
Sentence = Noun Phrase, Verb Phrase, [Noun Phrase];

Noun = signs, directions, lives

Article = the

Verb = show, matter, look

Adjective = big, small, white, black

Noun Phrase = [Article], [Adjective], Noun | Noun Phrase;

Verb Phrase = Verb, [Noun Phrase];

The signs show the directions.

Small big directions matter the black white signs.

Noun 

Phrase

Verb 

Phrase

Article Noun Verb

the signs show

Article Noun

the directions

Noun 

Phrase
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Verb 

Phrase

Sentence

Noun 

Phrase

NounAdjective Verb

Sentence = Noun Phrase, Verb Phrase, [Noun Phrase];

Noun = signs, directions, lives

Article = the

Verb = show, matter, look

Adjective = big, small, white, black

Noun Phrase = [Article], [Adjective], Noun | Noun Phrase;

Verb Phrase = Verb, [Noun Phrase];

The signs show the directions.

Small big directions matter the black white signs.

black lives matter

Syntactically correct productions (sentences) don’t always convey meaning!

E.g. “I tested positively towards negative.”
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EBNF is a standard way of representing 

the syntax of a formal language (but not

the semantics!)

• Terminal symbols

– e.g. characters or strings

• Production rules

– combinations of terminal symbols
Robert McClure 

Niklaus Wirth

Grammars C6
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Very basic syntax of EBNF production rules:

• ‘=’ defines a production rule

• ‘|’ identifies alternates (e.g. ‘1’ | ‘2’ | ‘3’ )

• ‘{’, ‘}’ identify expressions that may occur zero or more times (e.g. ‘1’, { ‘0’ } )

• ‘[’, ‘]’ identify expressions that may occur zero or one time (e.g. ‘1’, [ ‘0’ ])

• ‘,’ identifies concatenation

• ‘-’ identifies exceptions

• ‘(’, ‘)’ identify groups

• ‘;’ terminates a production rule

Grammars C6
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PROGRAM DEMO1

BEGIN

A0:=3;

B:=45;

H:=-100023;

C:=A;

D123:=B34A;

BABOON:=GIRAFFE;

TEXT:="Hello world!";

END.

(* a simple program syntax in EBNF − Wikipedia *)

program = 'PROGRAM', white space, identifier, white space, 

'BEGIN', white space, 

{ assignment, ";", white space }, 

'END.' ;

identifier = alphabetic character, { alphabetic character | digit } ;

number = [ "-" ], digit, { digit } ;

string = '"' , { all characters − '"' }, '"' ;

assignment = identifier , ":=" , ( number | identifier | string ) ;

alphabetic character = "A" | "B" | "C" | "D" | "E" | "F" | "G"

| "H" | "I" | "J" | "K" | "L" | "M" | "N"

| "O" | "P" | "Q" | "R" | "S" | "T" | "U"

| "V" | "W" | "X" | "Y" | "Z" ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

white space = ? white space characters ? ;

all characters = ? all visible characters ? ;

Grammars C6
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Grammar for arrangement of characters that are:

• Natural numbers?
natural = ‘0’ | (nzdigit, { digit }) ;

nzdigit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;

digit = ‘0’ | nzdigit ;

• Integers?
integer = ‘0’ | ([‘-’], nzdigit, { digit }) ;

• Decimal numbers?
real = ([‘-’], natural, [(‘.’ { digit }, nzdigit)]) – ‘-0’ ;  

• 24hr time, digital clock?
time = hour, ‘:’, min ;

hour = ( ( ‘0’ | ‘1’ ) , digit ) | ( ‘2’ , ( ‘0’ | ‘1’ | ‘2’ | ‘3’)) ;

min = ( ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ ), digit ;

Grammars C6


