
Structured Programming 1110/1140/6710

Grammars

EBNF

Formal Grammars

Structured Programming 1110/1140/1510/6710

Formal Grammars

15

Formal languages are distinguished from natural

languages by their artificial construction (rather than

natural emergence).

Noam Chomsky is often credited with opening the

field of formal grammars while studying natural

languages.

Duncan Rawlinson (Creative Commons)

Noam Chomsky

C6Grammars

Structured Programming 1110/1140/1510/6710

Generative Grammars

16

C6Grammars

Sentence
Sentence = Noun Phrase, Verb Phrase, [Noun Phrase];

Noun = signs, directions, lives

Article = the

Verb = show, matter, look

Adjective = big, small, white, black

Noun Phrase = [Article], [Adjective], Noun | Noun Phrase;

Verb Phrase = Verb, [Noun Phrase];

The signs show the directions.

Small big directions matter the black white signs.

Noun

Phrase

Verb

Phrase

Article Noun Verb

the signs show

Article Noun

the directions

Noun

Phrase

Structured Programming 1110/1140/1510/6710

Generative Grammars

17

C6Grammars

Verb

Phrase

Sentence

Noun

Phrase

NounAdjective Verb

Sentence = Noun Phrase, Verb Phrase, [Noun Phrase];

Noun = signs, directions, lives

Article = the

Verb = show, matter, look

Adjective = big, small, white, black

Noun Phrase = [Article], [Adjective], Noun | Noun Phrase;

Verb Phrase = Verb, [Noun Phrase];

The signs show the directions.

Small big directions matter the black white signs.

black lives matter

Syntactically correct productions (sentences) don’t always convey meaning!

E.g. “I tested positively towards negative.”

Structured Programming 1110/1140/1510/6710

Extended Backus-Naur Form

18

EBNF is a standard way of representing

the syntax of a formal language (but not

the semantics!)

• Terminal symbols

– e.g. characters or strings

• Production rules

– combinations of terminal symbols
Robert McClure

Niklaus Wirth

Grammars C6

Structured Programming 1110/1140/1510/6710

Extended Backus-Naur Form

19

Very basic syntax of EBNF production rules:

• ‘=’ defines a production rule

• ‘|’ identifies alternates (e.g. ‘1’ | ‘2’ | ‘3’)

• ‘{’, ‘}’ identify expressions that may occur zero or more times (e.g. ‘1’, { ‘0’ })

• ‘[’, ‘]’ identify expressions that may occur zero or one time (e.g. ‘1’, [‘0’])

• ‘,’ identifies concatenation

• ‘-’ identifies exceptions

• ‘(’, ‘)’ identify groups

• ‘;’ terminates a production rule

Grammars C6

Structured Programming 1110/1140/1510/6710

Example EBNF grammar

20

PROGRAM DEMO1

BEGIN

A0:=3;

B:=45;

H:=-100023;

C:=A;

D123:=B34A;

BABOON:=GIRAFFE;

TEXT:="Hello world!";

END.

(* a simple program syntax in EBNF − Wikipedia *)

program = 'PROGRAM', white space, identifier, white space,

'BEGIN', white space,

{ assignment, ";", white space },

'END.' ;

identifier = alphabetic character, { alphabetic character | digit } ;

number = ["-"], digit, { digit } ;

string = '"' , { all characters − '"' }, '"' ;

assignment = identifier , ":=" , (number | identifier | string) ;

alphabetic character = "A" | "B" | "C" | "D" | "E" | "F" | "G"

| "H" | "I" | "J" | "K" | "L" | "M" | "N"

| "O" | "P" | "Q" | "R" | "S" | "T" | "U"

| "V" | "W" | "X" | "Y" | "Z" ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

white space = ? white space characters ? ;

all characters = ? all visible characters ? ;

Grammars C6

Structured Programming 1110/1140/1510/6710

Simple EBNF Grammars

21

Grammar for arrangement of characters that are:

• Natural numbers?
natural = ‘0’ | (nzdigit, { digit }) ;

nzdigit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;

digit = ‘0’ | nzdigit ;

• Integers?
integer = ‘0’ | ([‘-’], nzdigit, { digit }) ;

• Decimal numbers?
real = ([‘-’], natural, [(‘.’ { digit }, nzdigit)]) – ‘-0’ ;

• 24hr time, digital clock?
time = hour, ‘:’, min ;

hour = ((‘0’ | ‘1’) , digit) | (‘2’ , (‘0’ | ‘1’ | ‘2’ | ‘3’)) ;

min = (‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’), digit ;

Grammars C6

