
Structured Programming 1110/1140/6710

Imperative programming languages

Java Standard Library

Types

Hello World

Imperative programming languages

Java Standard Library

Types

Hello World

Introductory Java 1Introductory Java 1

Structured Programming 1110/1140/6710

Introductory Java J1

32

Structured Programming 1110/1140/6710

Why Java?

• Learn multiple programming paradigms

• Important example of:

– Object-oriented programming

– Large scale programming

– Programming with a rich standard library

Introductory Java J1

33

Structured Programming 1110/1140/6710

Imperative Programming Languages

Introductory Java J1

Programming
Languages

Declarative

Functional
Logic

Programming

Imperative

Procedural

Object-
Oriented

Pure functional

languages, like
Haskell, only
transform state

using functions
without side effects.

Object-oriented

languages use
structured (procedural)
code, tightly coupling

data with the code that
transforms it.

Declarative

languages describe
the desired result
without explicitly

listing steps
required to achieve

that goal.

Imperative

languages describe
computation in
terms of a series of

statements that
transform state.

34

Structured Programming 1110/1140/6710

Imperative Programming Languages

Introductory Java J1

35

• Sequence

• Selection

• Iteration

Object Oriented Programming Languages

• Structured code

• Code (behavior) tightly coupled with data (state) that it manipulates

Structured Programming 1110/1140/6710

The Waterloo Java Visualizer

A great resource. Type in

simple Java programs and

watch step-by-step execution.

A great way to enhance your

understanding of a new

language.

Introductory Java J1

36

Structured Programming 1110/1140/6710

The Oracle Java Tutorials

This course follows the structure of the Oracle Java Tutorials for the

basic introduction to Java.

The tutorials are subject to Oracle’s ‘Java Tutorial Copyright and License’ (Berkeley license).

We will move very fast for the first few weeks. You should use the

tutorials to ensure that you rapidly become proficient in the basics

of Java.

Introductory Java J1

37

Structured Programming 1110/1140/6710

The Java Standard Library

Introductory Java J1

• The Java language is augmented with a large standard library
(.NET does the same for C#)

– IO (accessing files, network, etc.)

– Graphics

– Standard data structures

– Much more

• Using and understanding the standard library is part of learning a

major language like Java or C#.

• Rich standard libraries are a key software engineering tool.

38

Structured Programming 1110/1140/6710

Data types

Introductory Java J1

The type of a unit of data determines the possible values that data

may take on.

• Weak v strong
– Must all data be typed? Can types be coerced or converted?

• Static v dynamic
– Is checking done at compile-time or run-time?

Haskell: strong, static

Java: strong, static and dynamic

39

Introduction to Software Systems 1110/1140/6710

Types

Objects

Classes

Inheritance

Interfaces

Introductory Java 2

Introduction to Software Systems 1110/1140/6710

Introductory Java J2

Objects

Objects combine state and behavior

• State: fields (data types)

• Behavior: methods (imperative code)

Example: bicycle

• State: current speed, direction, cadence, & gear

• Behavior: change cadence, change gear, brake

29

Introduction to Software Systems 1110/1140/6710

Introductory Java J2

Classes

Aristotle 384-322BC

‘Blood-bearing animals’:

1. Four-footed animals with live young,

2. Birds,

3. Egg-laying four-footed animals,

4. Whales,

5. Fishes

30

Introduction to Software Systems 1110/1140/6710

Introductory Java J2

A class is a blueprint or ‘type’ for an object

• Instance: one instantiation of a class (aka object)

• Class: blueprint / definition for many instances

Example: bicycle

• Instance: your bike

• Class: Kona Jake The Snake 2012

Classes

31

Introduction to Software Systems 1110/1140/6710

Introductory Java J2

Inheritance

Classes may form a hierarchy

• sub-class: extends a super-class

Example: bicycle

• class: KonaJakeTheSnake2012

• super-class: CyclocrossBike

• super-class: UprightBike

• super-class: Bike

• super-class: Object

32

Introduction to Software Systems 1110/1140/6710

Introductory Java J2

Java Interfaces

Methods define behavior

• An interface is a group of methods without implementations

Example: an interface MovableThing might include:

• brake()

• speedup()

Any class that implements MovableThing must include definitions of

these methods.

33

Structured Programming 1110/1140/6710

Naming

Literals

Primitives

Naming

Literals

Primitives

Introductory Java 3Introductory Java 3

Structured Programming 1110/1140/6710

Java Modules

• A module is a named group of packages and related resources

• Strong encapsulation

• Explicit dependencies

54

Introductory Java J3

module java.sql {

requires transitive java.logging;

requires transitive java.transaction.xa;

requires transitive java.xml;

exports java.sql;

exports javax.sql;

uses java.sql.Driver;

}

Structured Programming 1110/1140/6710

Introductory Java J3

Java Packages

Which Mary?

Mary Queen of Scots

‘Queen of Scots’ provides a namespace
within which ‘Mary’ is well defined. In Java
a package provides a namespace.

55

Structured Programming 1110/1140/6710

Introductory Java J3

Java Variables

• Instance (non-static fields, object-local)

– Each object has its own version (instance) of the field

• Class (static fields, global)

– Exactly one version of the field exists

• Local

– Temporary state, limited to execution scope of code

• Parameters

– Temporary state, limited to execution scope, passed

from one method to another

56

Structured Programming 1110/1140/6710

Introductory Java J3

Java Naming

• Java names are case-sensitive

– Whitespace not permitted

– $, _ to be avoided

– Java keywords and reserved words cannot be used

• Capitalization conventions

– Class names start with capital letters (Bike)

– Variable names start with lower case, and use upper case for subsequent
words (currentGear)

– Constant names use all caps and underscores (MAX_GEAR_RATIO)

57

Structured Programming 1110/1140/6710

Java’s Primitive Data Types

Introductory Java J3

type Description Range Default

byte 8-bit signed 2’s complement integer -128 - 127 0

short 16-bit signed 2’s complement integer -32768 - 32767 0

int 32-bit signed 2’s complement integer -231 - 231-1 0

long 64-bit signed 2’s complement integer -263 - 263-1 0L

float single precision 32-bit IEEE 754 floating point number 0.0f

double double precision 64-bit IEEE 754 floating point number 0.0d

boolean logically just a single bit: true or false true, false false

char 16-bit Unicode character 0 - 65535 0

In addition to objects, Java has 8 special, built-in ‘primitive’ data types.

58

Structured Programming 1110/1140/6710

Java Literals

Introductory Java J3

• When a numerical value (e.g. ‘1’) appears, the compiler normally
knows exactly what it means.

• Special cases:

– An integer value is a long if it ends with ‘l’ or ‘L’
– The prefix 0x indicates hexadecimal, 0b is binary:

• 0x30 // 48 expressed in hex

• 0b110000 // 48 expressed in binary

– An ‘f’ indicates a float, while ‘d’ indicates double.

– Underscores may be used to break up numbers:

• long creditCardNumber = 1234_5678_9012_3456L;

59

Structured Programming COMP1110/6710

Arrays, Operators, Expressions

Statements, Blocks, Random

Arrays, Operators, Expressions

Statements, Blocks, Random

Introductory Java 4Introductory Java 4

Structured Programming COMP1110/6710

Java Arrays

Introductory Java J4

• Arrays hold a fixed number of values of a given type (or sub-type)

that can be accessed by an index

• Declaring:
int[] values;

• Initializing:
values = new int[8]; // 8 element array

• Accessing:
int x = values[3]; // the 4th element

• Copying:
System.arraycopy(x, 0, y, 0, 8);

16

Structured Programming COMP1110/6710

Java Operators

Introductory Java J4

• Assignment
=

• Arithmetic
+ - * / %

• Unary
+ - ++ -- !

• Equality, relational, conditional and instanceof
== != > >= < <= && || instanceof

• Bitwise
~ & ^ | << >> >>>

17

Structured Programming COMP1110/6710

Introductory Java J4

Expressions

• A construct that evaluates to a single value.

• Made up of

– variables

– operators

– method invocations

• Compound expressions follow precedence rules

– Use parentheses (clarity, disambiguation)

18

Structured Programming COMP1110/6710

Introductory Java J4

Statements

• A complete unit of execution.

• Expression statements (expressions made into statements by

terminating with ‘;’):
– Assignment expressions

– Use of ++ or --

– Method invocations

– Object creation expressions

• Declaration statements

• Control flow statements

19

Structured Programming COMP1110/6710

Introductory Java J4

Blocks

• Zero or more statements between balanced braces (‘{’ and ‘}’)
• Can be used anywhere a single statement can

20

Structured Programming COMP1110/6710

The Random Class

The Random class provides a pseudo-random number generator:

Random rand = new Random();

You can optionally provide a seed (for determinism):

Random rand = new Random(12345);

You can then generate random numbers of different types:

int i = rand.nextInt(10); // number in 0-9

21

Random J4

Structured Programming 1110/1140/6710

Control flow

if-then-else

switch

Control Flow 1

Structured Programming 1110/1140/6710

Control Flow J5

6

Women workers (‘computers’) in a calculation “factory,” 1930s. Courtesy of the Library of Congress.

Structured Programming 1110/1140/6710

Control Flow J5

7

Calculating a trajectory could take up to 40 hours using a desk-top calculator. The same problem took 30 minutes or so on the Moore School's

differential analyzer. But the School had only one such machine, and since each firing table involved hundreds of trajectories it might still take

the better part of a month to complete just one table. [Winegrad & Akera 1996]

Structured Programming 1110/1140/6710

Control Flow J5

8

Source: Ad Meskens, WikiMedia Commons

Structured Programming 1110/1140/6710

Control Flow J5

9

Structured Programming 1110/1140/6710

Control Flow J5

Control Flow

Control flow statements allow the execution of the program to deviate

from a strictly sequential execution of statements (‘selection’).

Imperative programming: sequence, selection, iteration.

10

Structured Programming 1110/1140/6710

Control Flow J5

if-then & if-then-else statements

• The if-then construct conditionally executes a block of code.

• The if-then-else construct conditionally executes one of two

blocks of code

11

Structured Programming 1110/1140/6710

Control Flow J5

The switch statement

• The switch statement selects one path among many.

• Execution jumps to the first matching case.

• Execution continues to the end of the switch unless a break

statement is issued.

12

Structured Programming 1110/1140/6710

Control Flow J5

The switch expression

• The switch expression selects one value among many.

• Execution jumps to the first matching case.

• The value of the expression is given by the yield operator in the

matching case.

13

Structured Programming 1110/1140/6710

Control flow

while & do-while

for

break, continue, return

Control flow

while & do-while

for

break, continue, return

Control Flow 2Control Flow 2

Structured Programming 1110/1140/6710

Control Flow J6

The while & do-while statements

• The while statement continuously executes a block while a

condition is true.

• The do-while construct evaluates the condition at the end of the

block rather than at the start.

Imperative programming: sequence, selection, iteration.

16

Structured Programming 1110/1140/6710

Control Flow J6

The for statement

• A compact way to iterate over a set of values.

• The statement has three logical parts:

– Initialization

– Termination condition

– Increment statement

• The ‘enhanced’ for statement infers the initialization, termination

and increment statements, given an array or collection

17

Structured Programming 1110/1140/6710

Control Flow J6

Branching statements

• The break statement terminates a loop construct

– Unlabeled terminates the loop in which it is called

– Labeled terminates the loop named by the label

• The continue statement skips the current iteration of a loop

– Unlabeled skips the current iteration of the loop in which it is called

– Labeled skips the current iteration of the loop named by the label

• The return statement exits the current method

18

Structured Programming 1110/1140/6710

Methods

Parameters

Return values

Methods

Parameters

Return values

MethodsMethods

Structured Programming 1110/1140/6710

Methods

• A subroutine

– Reusable code to perform a specific task

– Modularity, encapsulation

• May take arguments (parameters)

• May return a value

22

Methods J7

Structured Programming 1110/1140/6710

Methods J7

Method Declaration

Method declarations will have the following, in order:

• Any modifiers (public, private, etc.)

• return type

• method name

• parameters, in parentheses

• Any exceptions the method may throw

• The method body (code)

23

class String {…
public byte[] getBytes(String charsetName)

throws UnsupportedEncodingException {…}
… }

Structured Programming 1110/1140/6710

Methods J7

Class and Instance methods

A method declared with the static modifier is a class method

(otherwise it is an instance method)

• Class methods

– May operate on class fields only

• Instance methods

– May operate on class and instance fields

24

Structured Programming 1110/1140/6710

Methods J7

Parameters (method arguments)

Parameters are the mechanism for passing information to a method

or constructor.

• Primitive types passed by value

– Changes to parameter are not seen by caller

• Reference types passed by value

– Changes to the reference are not seen by caller

– Changes to object referred to are seen by caller

• Your last parameter may in fact be more than one parameter

(varargs), and treated as an array

25

Structured Programming 1110/1140/6710

Methods J7

Returning a Value from a Method

The return statement exits the current method

Methods return to caller when:

• all statements in method executed, or

• a return statement is reached, or

• the method throws an exception (later)

Methods declared void do not return a value.

All other methods must return a value of the declared type

(or a subclass of the declared type, described later).

26

Structured Programming 1110/1140/6710

Nested Classes

Nested classes

Structured Programming 1110/1140/6710

Nested Classes

A class may be defined within another class. Such a class is called a

nested class. The main motivation for nested classes is to improve

encapsulation and clarity.

• Static nested classes (use static keyword) behave as if

declared elsewhere, but happen to be packaged together in a

single file, cannot refer directly to instance fields of parent

• an inner class (non-static) has direct access to the instance fields

and members of its enclosing class.

345-388 358 7

Nested Classes J8

Structured Programming 1110/1140/6710

Lambda Expressions

Structured Programming 1110/1140/6710

Lambda Expressions

From Java version 8, lambda expressions allow code to be passed as

a parameter, just like data.

• Particularly useful for event handling; can pass behavior as an

argument (‘do this when x happens’).
• Syntax

– Comma-separated formal parameters (x)

– Arrow (->)

– Body (either single expression or statement block, which may contain return)

x -> x > 100 or x -> { ... return true; }

18

J9Lambda Expressions

Structured Programming 1110/1140/6710

Functional Interfaces

A lambda expression implements a functional interface: an interface

which only defines a single method.

Commonly-used functional interfaces are defined in package
java.util.function, e.g.

public interface IntPredicate {

boolean test(int value);

}

public interface DoubleSupplier {

double getAsDouble();

}

19

J9Lambda Expressions

Structured Programming 1110/1140/6710

Number, Integer, Short, Float, etc

Autoboxing

Math

Number, Integer, Short, Float, etc

Autoboxing

Math

Number, AutoboxingNumber, Autoboxing

Structured Programming 1110/1140/6710

The Number Classes

Normally you will represent numbers with the primitive types int,

short, float, etc. Java includes ‘boxed’ object analogues to each of
these: Integer, Short, Float, etc.

• Number classes have methods (primitives don’t)
– toString(), parseInt(), etc.

• Number classes have constants

– Integer.MIN_VALUE, Short.MAX_VALUE, etc

• Number classes have a space overhead

– They are instantiated as true objects

15

Number J10

Structured Programming 1110/1140/6710

Autoboxing

Classes such as Integer and Character are ‘boxed’ versions of the
primitive types int and char (i.e. object versions of the primitives).

Java offers automatic support for boxing and unboxing.

• Boxing: Integer i = 5;

• Unboxing: int j = i;

419 16

Autoboxing J10

Structured Programming 1110/1140/6710

The Math class contains methods and constants useful for basic

mathematics:

• Constants: Math.PI and Math.E

• Trigonometry: sin(), cos(), etc.

• Rounding: abs(), ceil(), floor(), etc.

• Comparison functions: max(), min()

• Exponentials and logs: exp(), log(), pow(), etc.

• Random number generation: random()

1360 270 17

The Math class

Math J10

Structured Programming 1110/1140/6710

Character and String

Character and String

Structured Programming 1110/1140/6710

The Character Class

The Character class boxes char, just as Integer boxes int. It

contains methods and constants useful for manipulating

characters:

• Property methods: isLetter(), isDigit(), etc.

• Conversion: toString() (a single character string!)

Escape sequences are used to represent characters that have a

special meaning in Java syntax:

• \’ , \” , \\, \n, etc.

11

Character and String J11

Structured Programming 1110/1140/6710

The String Class

The String class is provided by Java to store and manipulate strings

(by contrast, in C, a string is simply an array of characters).

• Implicit creation from literal:

String x = "foo";

• Concatenation with “+”:
String y = x + "bar";

• StringBuilder class

118 596 12

Character and String J11

Structured Programming 1110/1140/6710

Operations on Strings

• Get length (number of characters):

if (x.length() > 3) …
• Get a character with charAt()

• Get a substring with substring()

• Others: split(), trim(), toLowerCase(), etc.

• Finding: indexOf(), contains(), etc.

• Replacing: replace(), replaceAll(), etc.

511 596 13

Character and String J11

Structured Programming 1110/1140/6710

Generics

Structured Programming 1110/1140/6710

Generics

Sometimes it is useful to parameterize a class with a type, T.

Rather than IntContainer, LongContainer, etc. we can just write

Container<T>, and then create instances such as

Container<Integer>.

We can also create generic methods that accept type parameters:
static <T> void acceptSomeValue(T value) { … }
Prior to the introduction of Java generics, programmers often used

Object as a work-around as it can refer to any non-primitive type.

617 17

J12Generics

Structured Programming 1110/1140/6710

Generic Type Inference

Lambda Expressions

Local Variables

Type Inference

Structured Programming 1110/1140/6710

Type Inference

The Java compiler can infer many types from context, cutting down on

boilerplate code.

Instantiating generic classes:

LinkedList<String> s = new LinkedList<>();

Generic methods:

public <T> void add(T value) { }

list.add(“A String”);

22

J13Type Inference

Structured Programming 1110/1140/6710

Local Variables

With the var keyword, Java can infer the type of a local variable

from its initialization expression.

The most specific type is inferred.

var theAnswer = 42;

var bike = new Bike();

var mystery; // invalid – no initializer

var nothing = null; // invalid – null has no type

23

J13Type Inference

Structured Programming 1110/1140/6710

Lambda Expressions

Types of parameters to lambda expressions:

Predicate<String> nonEmpty = x -> x.length() > 0;

However, can’t infer the type of a lambda expression:

var lambda = x -> x + 1; // invalid – what type is x?

var lambda = (int x) -> x + 1; // invalid – what is lambda?

IntFunction lambda = (int x) -> x + 1; // OK

24

J13Type Inference

Structured Programming 1110/1140/6710

The Collections Framework

forEach

Ordering Collections

Collections

Structured Programming 1110/1140/6710

The Collections Framework

• Interfaces

– Implementation-agnostic interfaces for collections

• Implementations

– Concrete implementations

• Algorithms

– Searching, sorting, etc.

Using the framework saves writing your own: better performance,

fewer bugs, less work, etc.

6

J14Collections

Structured Programming 1110/1140/6710

The Collection Interface

• Basic operators

– size, isEmpty(), contains(), add(), remove()

• Traversal

– for-each, and iterators

• Bulk operators

– containsAll(), addAll(), removeAll(), retainAll(), clear()

• Array operators

– convert to and from arrays

7

J14Collections

Structured Programming 1110/1140/6710

Collection Types

• Primary collection types:

– Set (no duplicates, mathematical set)

– List (ordered elements)

– Queue (shared work queues)

– Map (<key, value> pairs)

• Each collection type is defined as an interface

– You need to choose a concrete collection

– Your choice will depend on your needs

8

Collections J14

Structured Programming 1110/1140/6710

Concrete Collection Types

Implemented Using

Interfaces Hash table Resizable

array

Tree Linked list Hash table +

linked list

Set HashSet TreeSet LinkedHashSet

List ArrayList LinkedList

Queue ArrayDeque LinkedList

Map HashMap TreeMap LinkedHashMap

9

Based on table from http://docs.oracle.com/javase/tutorial/collections/implementations/index.html

Collections J14

Structured Programming 1110/1140/6710

Four Commonly Used Collection Types

• HashSet implements a set as a hash table

– Makes no ordering guarantees

• ArrayList implements a list using an array

– Very fast access

• HashMap implements a map using a hash table

– Makes no ordering guarantees

• LinkedList implements a queue using a linked list

– First-in-first-out (FIFO) queue ordering

10

Collections J14

Structured Programming 1110/1140/6710

forEach

• Collections implement the forEach method, which applies an

action to every element in the collection.

Instead of:

for (Thing t : things) {

System.out.println(t);

}

You can do this:

things.forEach(t -> System.out.println(t));

11

J14Collections

Structured Programming 1110/1140/6710

Ordering Collections

• The Comparable interface defines a ‘natural’ ordering for all instances
of a given type, T:

public interface Comparable<T> {

public int compareTo(T o);

}

The return value is either negative, 0, or positive depending if the receiver comes before, equal, or after the argument, o.

• The Comparator interface allows a type T to be ordered in additional

ways:
public interface Comparator<T> {

int compare(T o1, T o2);

}

12

J14Ordering Collections

Structured Programming 1110/1140/6710

Collections.sort()

• No arguments

– uses natural order for type

• Single Lambda argument:

– uses order defined by lambda expression

– (a T, b T) -> { return <expression>;}

13

J14Ordering Collections

Structured Programming 1110/1140/6710

Josh Bloch Item 25: Prefer lists to arrays

• Why?

– Arrays are covariant, Generics are invariant

• if A extends B, then A[] is a subclass of B[]

• but List<A> has no relationship to List

14

// Fails at runtime!

Object[] objectArray = new Long[1];

objectArray[0] = “I don’t fit in”; // Throws ArrayStoreException
// Won’t compile!
List<Object> ol = new ArrayList<Long>(); // Incompatible types

ol.add(“I don’t fit in”);

J14Lists versus Arrays

Structured Programming 1110/1140/6710

Java Exceptions

Catch or Specify

Java syntax

Exceptions

Structured Programming 1110/1140/6710

Exceptions

Exceptions

Exceptions are a control flow construct for error management.

• Some similarity to event handling (lecture topic X2)

– Both disrupt the normal flow of execution,

transferring to event handler or exception handler

– However: exceptions are exceptional situations (events are expected)

• A file is not found or is inaccessible

• An array is accessed incorrectly (out of bounds)

• Division by zero

• A null pointer is dereferenced, etc.

27443-501

J15

Structured Programming 1110/1140/6710

Exceptions

Java Exceptions

Exceptions are thrown either:

• Implicitly (via a program error) or

• Explicitly (by executing the throw statement).

Exceptions are caught with a catch block.

Exceptions are propagated from callee to caller until a matching

handler is found. Methods throwing uncaught exceptions must have

the throws clause in their declaration.

28443-501

J15

Structured Programming 1110/1140/6710

Exceptions

Java’s Catch or Specify Requirement

Three kinds of exception:

• error (Error and its subclasses),

• runtime exception (RuntimeException and its subclasses),

• checked (everything else, must comply with Catch or Specify)

Java requires that code that may throw a checked exception must

be enclosed by either:

• a try statement with a suitable handler, or

• a method that declares that it throws the exception

29443-501

J15

Structured Programming 1110/1140/6710

Exceptions

Java try/catch Block Syntax

try {

// do something that may generate an exception

} catch (ArithmeticException e1) { // first catch

// this is an arithmetic exception handler

// handle the error and/or throw an exception

} catch (Exception e2) { // may have many catch blocks

// this an generic exception handler

// handle the error and/or throw an exception

} finally {

// this code is guaranteed to run

// if you need to clean up, put the code here

}

30443-501

J15

Structured Programming 1110/1140/6710

Thread and Runnable

start(), join() and sleep()

Races and synchronized

Java Threads

Structured Programming 1110/1140/1510/6710

Thread and Runnable

• The Thread class is used to create threads and interact with them.

• Two ways to create a thread:

1. Subclass Thread, extending its run()method.

• Advantages: class inherits all of Thread’s methods
• Disadvantages: can’t subclass anything else

2. Use the Runnable interface and implement its run() method.

• General, but does not inherit Thread’s methods

30

Java Threads J16

Structured Programming 1110/1140/1510/6710

start(), join() and sleep()

• Calling t.start() will start execution of the run() method within the

thread t (and continue with execution of the current thread).

• Calling t.join() will cause the current thread to wait until thread t

terminates.

• Calling Thread.sleep(ms) will cause the current thread to go to

sleep for ms milliseconds.

31

Java Threads J16

Structured Programming 1110/1140/1510/6710

Races and the synchronized keyword

• Too many cooks…
– Coordination is the big challenge of concurrency

– How do we avoid conflicts?

– How do we impose some level of coherence and order?

• A ‘race condition’ is a situation where one or more threads race
non-deterministically to be the first to read or write a variable

• The synchronized keyword

– Qualify a method, ensures only one thread executes that method at any time

32

Java Threads J16

