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Abstract Data Types (ADTS)

Abstract data types describe the behaviour (semantics) of a data type
without specifying its implementation. An ADT is thus abstract, not
concrete.

A container is a very general ADT, serving as a holder of objects. A
list Is an example of a specific container ADT.

An ADT is described in terms of the semantics of the operations that
may be performed over it.
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The List ADT

The list ADT is a container known mathematically as a finite
sequence of elements. A list has these fundamental properties:

 duplicates are allowed

« order is preserved

A list may support operations such as these:
 create: construct an empty list

« add: add an element to the list

* IS empty: test whether the list is empty
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Our List Interface

We will explore lists using a simple interface:

public interface List<T> {
void add (T wvalue);
T get (int index);
int size();
T remove (int index);
void reverse () ;
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void add (T wvalue) ; D . . . .
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T remove (int index) ; 2 . . . C

void reverse () ; . . .
String toString(); . . . DBA
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List Implementation

* Arrays
— Fast lookup of any element
— A little messy to grow and contract

* Linked list
— Logical fit to a list, easy to grow, contract
— Need to traverse list to find arbitrary element




