mpler

an
710

.

..

® R
s QO L S+
e s e
8@ 5 s
L s
D) s 2y
ol ok
£ g
% -5
v &

-1 > “ O
] T3 M2 iias

g = ;_.., ~ =
<L AR, R
ey g

$1

Australian

Uﬁ%&%?&'ty Abstract Data Types: Lists Al

Abstract Data Types (ADTS)

Abstract data types describe the behaviour (semantics) of a data type
without specifying its implementation. An ADT is thus abstract, not
concrete.

A container is a very general ADT, serving as a holder of objects. A
list Is an example of a specific container ADT.

An ADT is described in terms of the semantics of the operations that
may be performed over it.

Australian

Uﬁ%&%?&'ty Abstract Data Types: Lists Al

The List ADT

The list ADT is a container known mathematically as a finite
sequence of elements. A list has these fundamental properties:

 duplicates are allowed

« order is preserved

A list may support operations such as these:
 create: construct an empty list

« add: add an element to the list

* IS empty: test whether the list is empty

Australian

Uﬁ}iv%?é'ty Abstract Data Types: Lists Al

Our List Interface

We will explore lists using a simple interface:

public interface List<T> {
void add (T wvalue);
T get (int index);
int size();
T remove (int index);
void reverse () ;

Australian)
Unarsty Abstract Data Types: Lists Al

void add (T wvalue) ; D
P oSt inE ey - @EE 6 -
e areetl) () ([

T remove (int index) ; 2 . . . C

void reverse () ; . . .
String toString(); . . . DBA

Structured Programming 1110/1140/6710 9

Australian

Uﬁ}iv%?é'ty Abstract Data Types: Lists Al

List Implementation

* Arrays
— Fast lookup of any element
— A little messy to grow and contract

* Linked list
— Logical fit to a list, easy to grow, contract
— Need to traverse list to find arbitrary element

