
Structured Programming 1110/1140/6710

Recursive Algorithms

Recursion

Structured Programming 1110/1140/6710

Recursive Data Structure

A recursive data structure is comprised of components that reference

other components of the same type.

16

Recursion C1

A B C D

start end

linked list
tree

Structured Programming 1110/1140/6710

Recursive Algorithms

A recursive algorithm references itself.

A recursive algorithm is comprised of:

• one or more base cases

• a remainder that reduces to the base case/s

17

Recursion C1

Structured Programming 1110/1140/6710

Example: Fibonacci sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377…

fib(0) = 1 (base case)

fib(1) = 1 (base case)

fib(n) = fib(n-1) + fib(n-2) (for n ≥ 2)

18

Recursion

8

5

3
2

1 1

C1

Structured Programming 1110/1140/6710

Sort a list

• List of size 1 (base case)

– Already sorted

• List of size > 1

– Split into two sub lists

– Sort each sub list (recursion)

– Merge the two sorted sub lists into

one sorted list (by iteratively picking

the lower of the two least elements)

19

Recursion

Example: Mergesort (von Neumann, 1945)

C1

Animation: Visualizing Algorithms, Mike Bostock, bost.ocks.org/mike/algorithms

Structured Programming 1110/1140/6710

Hash functions

Choosing a good hash function

Hash functions

Choosing a good hash function

Hash FunctionsHash Functions

Introduction to Software Systems 1110/1140/6710

Hash Functions

A hash function is a function f(k) that maps a key, k, to a value, f(k),

within a prescribed range.

A hash is deterministic. (For a given key, k, f(k) will always be the same).

6

Hash Functions C2

Introduction to Software Systems 1110/1140/6710

Choosing a Good Hash Function

A good hash for a given population, P, of keys, k∈ P, will distribute f(k)

evenly within the prescribed range for the hash.

A perfect hash will give a unique f(k) for each k∈ P

7

Hash Functions C2

Structured Programming

Java hashCode()

Uses of Hashing

Hashing Applications

Structured Programming

Java hashCode()

Java provides a hash code for every object

• 32-bit signed integer

• Inherited from Object, but may be overridden

• Objects for which equals() is true must also have the same

hashCode().

• The hash need not be perfect (i.e. two different objects may share

the same hash).

17

Hashing Applications

839-857

C3

Structured Programming

Uses of Hashing

• Hash table (a map from key to value)

• Pruning a search

– Looking for duplicates

– Looking for similar values

• Compression

– A hash is typically much more compact that the key

• Correctness

– Checksums can confirm inequality

18

Hashing Applications C3

Structured Programming

Practical Examples…

Luhn Algorithm
Used to check for transcription errors

in credit cards (last digit checksum).

19

Hashing Applications

Hamming Codes
Error correcting codes (as

used in EEC memory)

C3

Structured Programming

Practical Examples…

rsync (Tridgell)
Synchronize files by (almost) only

moving the parts that are different.

20

Hashing Applications

MD5 (Rivest)
Previously used to encode

passwords (but no longer).

C3

Structured Programming 1110/1140/6710

Java File IO

Streams

Standard IO

Random access files

Buffering

Files

Structured Programming 1110/1140/6710

File IO as Streams

A stream is a standard abstraction used for files:

A sequence of values are read.

A sequence of values are written.

The stream reflects the sequential nature of file IO and the physical

characteristics of the media on which files traditionally reside (e.g.

tape or a spinning disk).

6

Files C4

Structured Programming 1110/1140/6710 7

Files C4

Structured Programming 1110/1140/6710 8

Files C4

Structured Programming 1110/1140/6710

Java I/O: Byte Streams

The classes InputStream and OutputStream allow you to read and

write streams of bytes to and from streams including files (subclasses:
FileInputStream and FileOutputStream).

• Open the stream

• Read or write from the stream (in bytes)

• Wrap operations in a try clause

• Use finally to close the streams

ints are used, even though bytes are transferred(!)

9

Files

916-917

C4

Structured Programming 1110/1140/6710

Java I/O: Character Streams

When reading and writing characters, you should use the classes
Reader and Writer, which allow you to read and write streams of

characters to and from streams including files (subclasses:
FileReader and FileWriter).

ints are used, even though chars are transferred.

10

Files

924

C4

Structured Programming 1110/1140/6710

File I/O: Buffering

Reading data one byte at a time is costly. Buffering is used to absorb

some of that overhead.

In Java the BufferedReader and BufferedWriter classes can be used

to buffer data read or written with FileReader and FileWriter.

To be sure that a buffer is flushed, call flush(), or close the file.

11

Files

924

C4

Disk: ~10ms SSD: ~100μs RAM: ~10ns Register: ~1ns

Structured Programming 1110/1140/6710

Java Command Line IO

Three standard IO streams (globally-defined objects):

• Standard input System.in

• Standard output System.out

• Standard error System.err

byte b = (byte) System.in.read();

System.out.write(b);

System.out.flush();

System.err.write(b);

12

Files

941

C4

Structured Programming 1110/1140/6710

“New” I/O (java.nio.file)

Java NIO offers simpler, event-driven interface

• Path — replaces java.io.File

• FileSystem — factory class for objects in the filesystem

• WatchService — utility class to detect file system changes

through event notification

• Files —create, rename, copy, modify attributes and delete files

13

Files

941

C4

Structured Programming 1110/1140/6710

Time and Space Complexity

Big O Notation

Examples

Practical Study: Sets

Computational

Complexity

Structured Programming 1110/1140/6710

Context

23

Computational Complexity

Key computational resources:

• Time

• Space

• Energy

Computational complexity is the study of how problem size affects

resource consumption for a given implementation.

• Worst case

– the complexity of solving the problem for the worst input of size n

• Average case

– is the complexity of solving the problem on an average.

C5

Structured Programming 1110/1140/6710

(Computational) Scaling

24

Computational Complexity

1. Identify n, the number that characterizes the problem size.

– Number of pixels on screen

– Number of elements to be sorted

– etc.

2. Study the algorithm to determine how resource consumption

changes as a function of n.

C5

Structured Programming 1110/1140/6710

Big O Notation

25

Computational Complexity

Suppose we have a problem of size n that takes g(n) time to

execute in the average case.

We say:

g(n) ∈ O(f(n))

if and only if there exists a constant c > 0

and a constant n0 > 0 such that for all n > n0 :

g(n) ≤ c × f(n)

C5

Structured Programming 1110/1140/6710

Simple Examples

26

Computational Complexity

• Constant O(1)

– Time to perform an addition

• Logarithmic O(log(n))

– Time to find an element in a (balanced) BST

• Linear O(n)

– Time to find an element within a list

• O(n log(n))

– Average time to sort using mergesort

• Quadratic O(n2)

– Time to compare n elements with each other

C5

Structured Programming 1110/1140/6710

Time Complexity: Counting Statements

27

Computational Complexity

Time complexity can estimated by simply counting the number of

statements to be executed.

• Traps

– Simple statements are constant time

– Library calls may have arbitrary complexity

C5

Structured Programming 1110/1140/6710

Concrete Examples

28

Computational Complexity

Consider hashing into a table of n elements…

public int hash(Integer key, int buckets) {

return key % buckets;

}

Constant time, O(1)

C5

Structured Programming 1110/1140/6710

Concrete Examples

29

Computational Complexity

Consider summing a list of size n…

public int sum(ArrayList<Integer> list) {

int rtn = 0;

for(Integer i: list) {

rtn += i;

return rtn;

}

Linear time, O(n)

C5

Structured Programming 1110/1140/6710

Concrete Examples

30

Computational Complexity

public int minDiff(ArrayList<Integer> values) {

int min = Integer.MAX_VALUE;

for (int i = 0; i < values.size(); i++) {

for (int j = i + 1; j < values.size(); j++) {

int diff = values.get(i)-values.get(j);

if (Math.abs(diff) < min)

min = Math.abs(diff);

}

}

}

S(N) = 1 + n + 4 ((n – 1) n/2) = 1 + n + 2 n2 – 2n = 2n2 – n + 1 ∈ O(n2)

(n – 1)n/2

(n – 1)n/2

(n – 1)n/2

(n – 1)n/2

n

1

Note: n -1 + n – 2 + … 2 + 1 = (n – 1) n /2

C5

Structured Programming 1110/1140/6710

Grammars

EBNF

Formal Grammars

Structured Programming 1110/1140/1510/6710

Formal Grammars

15

Formal languages are distinguished from natural

languages by their artificial construction (rather than

natural emergence).

Noam Chomsky is often credited with opening the

field of formal grammars while studying natural

languages.

Duncan Rawlinson (Creative Commons)

Noam Chomsky

C6Grammars

Structured Programming 1110/1140/1510/6710

Generative Grammars

16

C6Grammars

Sentence
Sentence = Noun Phrase, Verb Phrase, [Noun Phrase];

Noun = signs, directions, lives

Article = the

Verb = show, matter, look

Adjective = big, small, white, black

Noun Phrase = [Article], [Adjective], Noun | Noun Phrase;

Verb Phrase = Verb, [Noun Phrase];

The signs show the directions.

Small big directions matter the black white signs.

Noun

Phrase

Verb

Phrase

Article Noun Verb

the signs show

Article Noun

the directions

Noun

Phrase

Structured Programming 1110/1140/1510/6710

Generative Grammars

17

C6Grammars

Verb

Phrase

Sentence

Noun

Phrase

NounAdjective Verb

Sentence = Noun Phrase, Verb Phrase, [Noun Phrase];

Noun = signs, directions, lives

Article = the

Verb = show, matter, look

Adjective = big, small, white, black

Noun Phrase = [Article], [Adjective], Noun | Noun Phrase;

Verb Phrase = Verb, [Noun Phrase];

The signs show the directions.

Small big directions matter the black white signs.

black lives matter

Syntactically correct productions (sentences) don’t always convey meaning!
E.g. “I tested positively towards negative.”

Structured Programming 1110/1140/1510/6710

Extended Backus-Naur Form

18

EBNF is a standard way of representing

the syntax of a formal language (but not

the semantics!)

• Terminal symbols

– e.g. characters or strings

• Production rules

– combinations of terminal symbols
Robert McClure

Niklaus Wirth

Grammars C6

Structured Programming 1110/1140/1510/6710

Extended Backus-Naur Form

19

Very basic syntax of EBNF production rules:

• ‘=’ defines a production rule
• ‘|’ identifies alternates (e.g. ‘1’ | ‘2’ | ‘3’)

• ‘{’, ‘}’ identify expressions that may occur zero or more times (e.g. ‘1’, { ‘0’ })

• ‘[’, ‘]’ identify expressions that may occur zero or one time (e.g. ‘1’, [‘0’])

• ‘,’ identifies concatenation
• ‘-’ identifies exceptions
• ‘(’, ‘)’ identify groups
• ‘;’ terminates a production rule

Grammars C6

Structured Programming 1110/1140/1510/6710

Example EBNF grammar

20

PROGRAM DEMO1

BEGIN

A0:=3;

B:=45;

H:=-100023;

C:=A;

D123:=B34A;

BABOON:=GIRAFFE;

TEXT:="Hello world!";

END.

(* a simple program syntax in EBNF − Wikipedia *)
program = 'PROGRAM', white space, identifier, white space,

'BEGIN', white space,

{ assignment, ";", white space },

'END.' ;

identifier = alphabetic character, { alphabetic character | digit } ;

number = ["-"], digit, { digit } ;

string = '"' , { all characters − '"' }, '"' ;
assignment = identifier , ":=" , (number | identifier | string) ;

alphabetic character = "A" | "B" | "C" | "D" | "E" | "F" | "G"

| "H" | "I" | "J" | "K" | "L" | "M" | "N"

| "O" | "P" | "Q" | "R" | "S" | "T" | "U"

| "V" | "W" | "X" | "Y" | "Z" ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

white space = ? white space characters ? ;

all characters = ? all visible characters ? ;

Grammars C6

Structured Programming 1110/1140/1510/6710

Simple EBNF Grammars

21

Grammar for arrangement of characters that are:

• Natural numbers?
natural = ‘0’ | (nzdigit, { digit }) ;
nzdigit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;
digit = ‘0’ | nzdigit ;

• Integers?
integer = ‘0’ | ([‘-’], nzdigit, { digit }) ;

• Decimal numbers?
real = ([‘-’], natural, [(‘.’ { digit }, nzdigit)]) – ‘-0’ ;

• 24hr time, digital clock?
time = hour, ‘:’, min ;
hour = ((‘0’ | ‘1’) , digit) | (‘2’ , (‘0’ | ‘1’ | ‘2’ | ‘3’)) ;
min = (‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’), digit ;

Grammars C6

Structured Programming 1110/1140/6710

Concurrency

Threads

Structured Programming 1110/1140/6710

Concurrency, Processes and Threads

• Concurrency

– Multiple activities (appear to) occur simultaneously, (e.g. recording this lecture

and displaying this slide).

– ‘Time slicing’ allows a single execution unit to give the appearance of
concurrent execution

• Process

– Distinct execution context that (by default) shares nothing (e.g. IntelliJ,

PowerPoint, Quicktime recorder)

• Thread

– Intra-process execution context (e.g. IntelliJ’s compiler)

7

Threads C7

Structured Programming 1110/1140/6710

Why Threads?

• ‘Concurrency’
– Separate concerns (e.g. rendering v logic)

– Good for: distinct tasks that naturally occur concurrently

• ‘Parallelism’ (a special case of concurrency)

– Break task into pieces, exploit parallel hardware

– Good for: computationally intensive problems that can be readily partitioned

8

Threads C7

