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What is a file?

A file is a collection of data on secondary storage (hard drive, USB 
key, network file server).

Data in a file is a sequence of bytes (integer 0 ≤ b ≤ 255).
● The program reading a file must interpret the data (as text, image, 

sound, etc).
● Standard libraries provide support for interpreting data as text.
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I/O streams

A stream is a standard abstraction used for files:
● A sequence of values are read.
● A sequence of values are written.

The stream reflects the sequential nature of file IO and the physical 
characteristics of the media on which files traditionally reside (e.g. 
tape or a spinning disk).

Other I/O (e.g., network, keyboard) is also typically accessed as 
streams.
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I/O in Java: Byte streams

The classes java.io.InputStream and java.io.OutputStream allow 
reading and writing bytes to and from streams.
● Subclasses: FileInputStream and FileOutputStream for files.

– Open the stream (create stream object)
– Read or write bytes from the stream
– Wrap operations in a try clause
– Use finally to close the streams
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I/O in Java: Character streams

To read/write text files, use java.io.Reader and java.io.Writer 
which convert between bytes and characters according to a specified 
encoding.
● Subclasses: InputStreamReader and OutputStreamWriter
● Subclasses FileReader and FileWriter (shortcuts for wrapping a 
FileInputStream / FileOutputStream in a InputStreamReader / 
OutputStreamWriter).
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Text encoding

Each character is assigned a number.

Unicode defines a unique number (“code point”) for > 120,000 
characters (space for > 1 million).
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0100 0101 (69) 69

1110 0010 (226)
1000 0010 (130)
1010 1100 (172)
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Buffering I/O

In traditional storage media, accessing a specific byte (point in a file) 
is time consuming:

Disk: ~10ms   SSD: ~100μs  RAM:  ~10ns     Register:  ~1ns

But reading a consecutive “block” at one time is not much more so. 
Hence, buffering is used to absorb some of the overhead.

● BufferedReader and BufferedWriter can be wrapped around 
other reader/writer (e.g., FileReader and FileWriter) to buffer I/O.

● To flush the buffer, call flush(), or close the file.
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Terminal I/O

Three standard I/O streams:
• standard input: (usually typed) input to the program
• standard output: normal printed program output
• standard error: program error messages (not buffered)
• Available in Java as System.in, and System.out and System.err.

byte b = (byte) System.in.read();
System.out.write(b);
System.out.flush();
System.err.write(b);
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Algorithm complexity
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Computational Complexity

The computational resources consumed by an algorithm:
● as a function of the size of it’s input (scaling behaviour);
● in the worst case (usually, but also average, amortised, etc).

What computational resources?
• Time (counting elementary operations)
• Memory
• Energy, communications, I/O, samples...

Algorithm complexity is important when (but only when) dealing with 
large problems, or problems solved very frequently.
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Big-O notation
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Computational Complexity

Suppose we have a problem of size n that takes g(n) time to 
execute in the average case.

We say:

g(n) ∈ O(f(n))

if and only if there exists a constant c > 0

and a constant n0 > 0 such that for all n > n0 :

g(n) ≤ c × f(n)

C5
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Time complexity
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Computational Complexity

In analysis of algorithm time complexity, we are interested in the 
number of “elementary operations/statements” (not μs).
● Simple statements are constant time.
● Remember the factor c in O(f(n)).
● Beware: Library/subroutine calls can have arbitrary complexity.
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Example
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Computational Complexity

Find the greatest element ≤ x in an unsorted sequence of n elements. 
(For simplicity, assume some element ≤ x is in the sequence.)

Two approaches:

a) search the unsorted sequence; or

b) first sort the sequence, then search the sorted sequence.
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int unsortedFind(int x, List<Integer> ulist) {
  Integer best = null;
  for (var e : ulist) {
    if (e == x) return e;
    if (e <= x) {
      if (best == null || e < best)
        best = e;
    }
  }
  return best;
}

Analysis
● Elementary operation: comparison.
● If we’re lucky, ulist[0] = x.
● Worst case?

● ulist = {0, 1, 2, ..., x – 1}
● Compare each element with x and current 

value of best
● f(n) = 2n, so O(n)
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int sortedFind(int x, List<Integer> slist) {
  if (slist.get(slist.size()) < x)
    return slist.get(slist.size());
  int lower = 0;
  int upper = slist.size();
  while (upper - lower > 1) {
    int mid = (lower + upper) / 2;
    if (slist.get(mid) <= x)
      lower = mid;
    else
      upper = mid;
  }
  return slist.get(lower);
}

Analysis
● Loop invariant:

slist[lower] <= x and x < slist[upper].
● How many iterations of the loop?
● Initially, upper - lower = n − 1.
● The difference is halved in every 

iteration.
● Can halve it at most log

2
(n) times 

before it becomes 1.
● f(n) = log

2
(n) + 1, so O(log(n)).
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More examples
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Computational Complexity

• Constant O(1)
– evaluate a fixed expression; linked list insertion (given point reference).

• Logarithmic O(log(n))
– find an element in a balanced binary tree.

• Linear O(n)
– find a given, or “best” (e.g., min/max) element in a list; any constant-time 

operation on n elements.

• O(n log(n))
– sort using mergesort

• Quadratic O(n2)
– compare n elements with each other pair-wise
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Problem complexity
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Computational Complexity

The complexity of a problem is the resources (time, memory, etc) 
that any algorithm must use, in the worst case, to solve the problem, 
as a function of instance size.

Hierarchy theorem: For any computable function f(n), there is a 
problem that requires time (memory) greater than f(n).
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How fast can you sort?
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Computational Complexity

Any sorting algorithm that uses only pair-wise comparisons needs 
O(n log(n)) comparisons in the worst case.

log
2
(n!) ≥ n log(n) for large enough n.
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Caution
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Computational Complexity

“Premature optimization is the root of all evil in programming.”

(C.A.R. Hoare)

Scaling behaviour becomes important when (and only when) 
problems become large, or when they need to be solved very 
frequently.
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Formal grammars
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Formal languages are distinguished from natural 
languages by their artificial construction (rather than 
natural emergence).

The syntax of a formal language is defined, typically 
using a formal grammar (but, in theory of computation, 
can also be by an accepting machine).

Duncan Rawlinson (Creative Commons)

Noam Chomsky
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Generative grammars
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● A set of terminal symbols (“words” of the language)
● A set of non-terminal symbols
● A set of production (rewrite) rules (symbol(s) => symbols)

– A rule allows replacing an occurrence of the lhs within an 
expression with the rhs.

● A starting (non-terminal) symbol.

The language is the set of all terminal symbol-only strings that can be 
generated from the starting symbol using the production rules.

Grammars C6
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Extended Backus-Naur Form (EBNF)
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A “standard” way of representing a generative grammar, with some syntactic 
sugar. Syntax of EBNF production rules:
• ‘=’ defines a production rule
• Quotes (‘ ’ or “ ”) identify terminal strings
• ‘|’ identifies alternates (e.g. ‘1’ | ‘2’ | ‘3’ )

• ‘{’, ‘}’ expression that may occur zero or more times (e.g. ‘1’, { ‘0’ } )

• ‘[’, ‘]’ expression that may occur zero or one time (e.g. ‘1’, [ ‘0’ ])

• ‘,’ identifies concatenation
• ‘-’ identifies exceptions
• ‘(’, ‘)’ identify groups
• ‘;’ terminates a rule

Grammars C6
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C6Grammars

sentence

sentence = noun phrase, verb phrase, [noun phrase];
noun phrase = pronoun | ([article], [adjective], noun | noun phrase);
verb phrase = verb, [noun phrase];
article = “a” | “an” | “the”
pronoun = “I” | “you” | “he” | “she” | “it” | “we” | “they” | “us” | “them”;
noun = ? all nouns in the dictionary ?
verb = ? all verbs in the dictionary ?
adjective = ? all adjectives in the dictionary ?

Examples:
 “The signs show the directions”
 “I sleep”
 “The blue a yellow horse talk the we”
 “Colourless green ideas sleep a furious calm”

noun 
phrase

verb 
phrase

article noun verb

the signs show

article noun

the directions

noun 
phrase
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Simple EBNF grammars
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● Natural numbers
natural = ‘0’ | (nzdigit, { digit }) ;
nzdigit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;
digit = ‘0’ | nzdigit ;

● Integers
integer = ‘0’ | ([‘-’], nzdigit, { digit }) ;

● Decimal numbers
real = ([‘-’], natural, [(‘.’ { digit }, nzdigit)]) – ‘-0’ ;  

● Balanced parentheses
lists = ‘(‘ lists ‘)’ | { lists } | ‘’ ;

Grammars C6
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