
Structured Programming 1110/1140/6710

Java File IO

Streams

Standard IO

Buffering

Java File IO

Streams

Standard IO

Buffering

FilesFiles C4

Structured Programming 1110/1140/6710

What is a file?

A file is a collection of data on secondary storage (hard drive, USB
key, network file server).

Data in a file is a sequence of bytes (integer 0 ≤ b ≤ 255).
● The program reading a file must interpret the data (as text, image,

sound, etc).
● Standard libraries provide support for interpreting data as text.

2

Files C4

Structured Programming 1110/1140/6710

I/O streams

A stream is a standard abstraction used for files:
● A sequence of values are read.
● A sequence of values are written.

The stream reflects the sequential nature of file IO and the physical
characteristics of the media on which files traditionally reside (e.g.
tape or a spinning disk).

Other I/O (e.g., network, keyboard) is also typically accessed as
streams.

3

Files C4

Structured Programming 1110/1140/6710 4

Files C4

Structured Programming 1110/1140/6710 5

Files C4

Structured Programming 1110/1140/6710

I/O in Java: Byte streams

The classes java.io.InputStream and java.io.OutputStream allow
reading and writing bytes to and from streams.
● Subclasses: FileInputStream and FileOutputStream for files.

– Open the stream (create stream object)
– Read or write bytes from the stream
– Wrap operations in a try clause
– Use finally to close the streams

6

Files

916-917

C4

Structured Programming 1110/1140/6710

I/O in Java: Character streams

To read/write text files, use java.io.Reader and java.io.Writer
which convert between bytes and characters according to a specified
encoding.
● Subclasses: InputStreamReader and OutputStreamWriter
● Subclasses FileReader and FileWriter (shortcuts for wrapping a
FileInputStream / FileOutputStream in a InputStreamReader /
OutputStreamWriter).

7

Files

924

C4

Structured Programming 1110/1140/6710

Text encoding

Each character is assigned a number.

Unicode defines a unique number (“code point”) for > 120,000
characters (space for > 1 million).

8

Files

924

C4

Bytes Code point Glyph

0100 0101 (69) 69

1110 0010 (226)
1000 0010 (130)
1010 1100 (172)

8364

Encoding (UTF-8) Font

Structured Programming 1110/1140/6710

Buffering I/O

In traditional storage media, accessing a specific byte (point in a file)
is time consuming:

Disk: ~10ms SSD: ~100μs RAM: ~10ns Register: ~1ns

But reading a consecutive “block” at one time is not much more so.
Hence, buffering is used to absorb some of the overhead.

● BufferedReader and BufferedWriter can be wrapped around
other reader/writer (e.g., FileReader and FileWriter) to buffer I/O.

● To flush the buffer, call flush(), or close the file.

9

Files

924

C4

Structured Programming 1110/1140/6710

Terminal I/O

Three standard I/O streams:
• standard input: (usually typed) input to the program
• standard output: normal printed program output
• standard error: program error messages (not buffered)
• Available in Java as System.in, and System.out and System.err.

byte b = (byte) System.in.read();
System.out.write(b);
System.out.flush();
System.err.write(b);

10

Files

941

C4

Structured Programming 1110/1140/6710

Algorithm complexity

Big-O notation

Examples

Problem complexity

Algorithm complexity

Big-O notation

Examples

Problem complexity

Computational
Complexity
Computational
Complexity C5

Structured Programming 1110/1140/6710

Algorithm complexity

12

Computational Complexity

The computational resources consumed by an algorithm:
● as a function of the size of it’s input (scaling behaviour);
● in the worst case (usually, but also average, amortised, etc).

What computational resources?
• Time (counting elementary operations)
• Memory
• Energy, communications, I/O, samples...

Algorithm complexity is important when (but only when) dealing with
large problems, or problems solved very frequently.

C5

Structured Programming 1110/1140/6710

Big-O notation

13

Computational Complexity

Suppose we have a problem of size n that takes g(n) time to
execute in the average case.

We say:

g(n) ∈ O(f(n))

if and only if there exists a constant c > 0

and a constant n0 > 0 such that for all n > n0 :

g(n) ≤ c × f(n)

C5

f(n) == n

f(n) == 3 n

Structured Programming 1110/1140/6710

Time complexity

14

Computational Complexity

In analysis of algorithm time complexity, we are interested in the
number of “elementary operations/statements” (not μs).
● Simple statements are constant time.
● Remember the factor c in O(f(n)).
● Beware: Library/subroutine calls can have arbitrary complexity.

C5

Structured Programming 1110/1140/6710

Example

15

Computational Complexity

Find the greatest element ≤ x in an unsorted sequence of n elements.
(For simplicity, assume some element ≤ x is in the sequence.)

Two approaches:

a) search the unsorted sequence; or

b) first sort the sequence, then search the sorted sequence.

C5

Structured Programming 1110/1140/6710

int unsortedFind(int x, List<Integer> ulist) {
 Integer best = null;
 for (var e : ulist) {
 if (e == x) return e;
 if (e <= x) {
 if (best == null || e < best)
 best = e;
 }
 }
 return best;
}

Analysis
● Elementary operation: comparison.
● If we’re lucky, ulist[0] = x.
● Worst case?

● ulist = {0, 1, 2, ..., x – 1}
● Compare each element with x and current

value of best
● f(n) = 2n, so O(n)

Structured Programming 1110/1140/6710

Structured Programming 1110/1140/6710

int sortedFind(int x, List<Integer> slist) {
 if (slist.get(slist.size()) < x)
 return slist.get(slist.size());
 int lower = 0;
 int upper = slist.size();
 while (upper - lower > 1) {
 int mid = (lower + upper) / 2;
 if (slist.get(mid) <= x)
 lower = mid;
 else
 upper = mid;
 }
 return slist.get(lower);
}

Analysis
● Loop invariant:

slist[lower] <= x and x < slist[upper].
● How many iterations of the loop?
● Initially, upper - lower = n − 1.
● The difference is halved in every

iteration.
● Can halve it at most log

2
(n) times

before it becomes 1.
● f(n) = log

2
(n) + 1, so O(log(n)).

Structured Programming 1110/1140/6710

Structured Programming 1110/1140/6710

More examples

20

Computational Complexity

• Constant O(1)
– evaluate a fixed expression; linked list insertion (given point reference).

• Logarithmic O(log(n))
– find an element in a balanced binary tree.

• Linear O(n)
– find a given, or “best” (e.g., min/max) element in a list; any constant-time

operation on n elements.

• O(n log(n))
– sort using mergesort

• Quadratic O(n2)
– compare n elements with each other pair-wise

C5

Structured Programming 1110/1140/6710

Problem complexity

21

Computational Complexity

The complexity of a problem is the resources (time, memory, etc)
that any algorithm must use, in the worst case, to solve the problem,
as a function of instance size.

Hierarchy theorem: For any computable function f(n), there is a
problem that requires time (memory) greater than f(n).

C5

Structured Programming 1110/1140/6710

How fast can you sort?

22

Computational Complexity

Any sorting algorithm that uses only pair-wise comparisons needs
O(n log(n)) comparisons in the worst case.

log
2
(n!) ≥ n log(n) for large enough n.

C5

Structured Programming 1110/1140/6710

Structured Programming 1110/1140/6710

Rate of growth

T
(2

n)
 /

 2
 T

(n
)

Structured Programming 1110/1140/6710

Caution

25

Computational Complexity

“Premature optimization is the root of all evil in programming.”

(C.A.R. Hoare)

Scaling behaviour becomes important when (and only when)
problems become large, or when they need to be solved very
frequently.

C5

Structured Programming 1110/1140/6710

Grammars

EBNF

Grammars

EBNF

Formal GrammarsFormal Grammars C6

Structured Programming 1110/1140/6710

Formal grammars

27

Formal languages are distinguished from natural
languages by their artificial construction (rather than
natural emergence).

The syntax of a formal language is defined, typically
using a formal grammar (but, in theory of computation,
can also be by an accepting machine).

Duncan Rawlinson (Creative Commons)

Noam Chomsky

C6Grammars

Structured Programming 1110/1140/6710

Generative grammars

28

● A set of terminal symbols (“words” of the language)
● A set of non-terminal symbols
● A set of production (rewrite) rules (symbol(s) => symbols)

– A rule allows replacing an occurrence of the lhs within an
expression with the rhs.

● A starting (non-terminal) symbol.

The language is the set of all terminal symbol-only strings that can be
generated from the starting symbol using the production rules.

Grammars C6

Structured Programming 1110/1140/6710

Extended Backus-Naur Form (EBNF)

29

A “standard” way of representing a generative grammar, with some syntactic
sugar. Syntax of EBNF production rules:
• ‘=’ defines a production rule
• Quotes (‘ ’ or “ ”) identify terminal strings
• ‘|’ identifies alternates (e.g. ‘1’ | ‘2’ | ‘3’)

• ‘{’, ‘}’ expression that may occur zero or more times (e.g. ‘1’, { ‘0’ })

• ‘[’, ‘]’ expression that may occur zero or one time (e.g. ‘1’, [‘0’])

• ‘,’ identifies concatenation
• ‘-’ identifies exceptions
• ‘(’, ‘)’ identify groups
• ‘;’ terminates a rule

Grammars C6

Structured Programming 1110/1140/6710 30

C6Grammars

sentence

sentence = noun phrase, verb phrase, [noun phrase];
noun phrase = pronoun | ([article], [adjective], noun | noun phrase);
verb phrase = verb, [noun phrase];
article = “a” | “an” | “the”
pronoun = “I” | “you” | “he” | “she” | “it” | “we” | “they” | “us” | “them”;
noun = ? all nouns in the dictionary ?
verb = ? all verbs in the dictionary ?
adjective = ? all adjectives in the dictionary ?

Examples:
 “The signs show the directions”
 “I sleep”
 “The blue a yellow horse talk the we”
 “Colourless green ideas sleep a furious calm”

noun
phrase

verb
phrase

article noun verb

the signs show

article noun

the directions

noun
phrase

Structured Programming 1110/1140/6710

Simple EBNF grammars

31

● Natural numbers
natural = ‘0’ | (nzdigit, { digit }) ;
nzdigit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;
digit = ‘0’ | nzdigit ;

● Integers
integer = ‘0’ | ([‘-’], nzdigit, { digit }) ;

● Decimal numbers
real = ([‘-’], natural, [(‘.’ { digit }, nzdigit)]) – ‘-0’ ;

● Balanced parentheses
lists = ‘(‘ lists ‘)’ | { lists } | ‘’ ;

Grammars C6

	Slide 1
	File IO as Streams
	Slide 3
	Slide 4
	Slide 5
	Java I/O: Byte Streams
	Java I/O: Character Streams
	Slide 8
	File I/O: Buffering
	Java Command Line IO
	Slide 11
	Context
	Big O Notation
	Time Complexity: Counting Statements
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Simple Examples
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Formal Grammars
	Extended Backus-Naur Form_clipboard0
	Extended Backus-Naur Form
	Generative Grammars
	Simple EBNF Grammars

