
COMP1140/1110/6710
Structured programming

Revision – End of Semester



The final exam
* is scheduled 9.30am AEST on Tuesday the 8th

of November;
* is 3 hours;
* is on-line: access/submit through exam gitlab;
* is open-book: you may refer to course material,

notes, documentation, search the web, etc;
* is individual: you must not communicate with

anyone other than the course staff through
private posts on piazza.



* This week
- Ensure you have a working IDE
- Clone the exam repository to the computer

you will be using for the exam.
- Access to the repo will close on Friday.
- Setup and test self-invigilation (optional).

* During the exam
- At the start, pull updates from your exam

repository – it will now have questions in it.
- push your work as you complete it.



https:
//comp.anu.edu.au/courses/comp1110/
assessments/campus_only/final/

https://comp.anu.edu.au/courses/comp1110/assessments/campus_only/final/
https://comp.anu.edu.au/courses/comp1110/assessments/campus_only/final/
https://comp.anu.edu.au/courses/comp1110/assessments/campus_only/final/


Self-invigilation
* You record yourself during the exam.
* You keep the recording.
* If we find cause to doubt the integrity of your

exam submission, then you may submit your
recording as evidence in your favour.

* For a recording to be useful, it must:
- show your entire screen (at readable

resolution);
- identify you, with audible sound;
- for the entire duration of the exam.



Core knowledge
* Basic programming in Java:
- design iterative/recursive algorithms;
- variable scope & state, references;
- effective use of standard library.

* Object-oriented programming in Java:
- classes & inheritance, polymorphism, nested classes;
- object creation & initialisation, equality, hashing,

comparison.
* Data structures:
- interfaces and implementation design choices;
- time and space complexity.

* Software development practice:
- writing good tests (using JUnit);
- effective use of tools (IDE, git).



Revision topics



Recursion
* Recursion is a way of thinking about how to

solve computational problems.
- “If I had the answer to problem(sub) ...‘, then I could

easily find the answer to problem(this)”.
- Example: The height of a (binary) tree is the max depth

of any node (longest path from root to any leaf node). If
the height of the left subtree is hL and the height of the
right subtree is hR, then the height of this tree is
1 +max(hL,hR).

* Straightforward mapping from recursive idea to
recursive implementation.
- Tricky bit is often how to collect the results.



What makes good test cases?
* Satisfy assumptions/restrictions.
* Simple (enough that correctness can be

determined “by hand”).
* Cover the space of inputs and outputs.
* Cover branches in the code.
* Cover “edge cases”. For example:
- What if the string/collection is empty?
- What if n is zero?
- Any value that requires special treatment in

the code.



static

* Declare field, method or nested class static.
* static is the opposite of dynamic:
- method dispatch by type of the referring

variable, not the object;
- field reference is determined statically.

* Static context: no this.
* import static.


