

ﬁ\u?traliian
g DEs S1

Integrated Development Environments

* A rich context for software development
— Examples: Eclipse, Intellid, VisualStudio, XCode

« Syntax highlighting, continuous compilation, testing, debugging,
packaging

« Powerful refactoring capabilities

NGl Revision Control 51

University

>

Revision Control

* Indispensible software engineering tool

« Solitary work
— Personal audit trail and time machine

— Establish when bug was introduced
— Fearlessly explore new ideas (roll back if no good)

« Teamwork
— Concurrently develop
— Share work coherently

Australian

e_',, National
University

Git
 Distributed version control system
— hg, git, others (conceptually very similar)

 Contrast with centralized version control
— CVS, svn, others

We will focus on distributed version control systems and not discuss
centralized version control any further.

Australian

Universty Git & GitLab
Git & GitLab

comp1110/ comp1110-1abs R

COMP1110 Lab 1 ‘

comp1110/ comp1110-labs

COMP1110 Lab 1

Purpose ‘

to0iswer. i
course ttors. Pissss make te most o s pportnty.

Purpose

comp1110/ comp1110-abs aeam+ s

COMP1110 Lab 1

Tasks

1. Sotup your GiLab account.

tools work: the
course utors. Please make e most of the opportunity

Purpose

o s Aot Tasks
Pl courss tutos. Pieesa make the mostof 2 pportunty it i L it
——— fork| ‘oo
Taske o
S SetumyouGrtabsccoune : n
personal profile if: yﬁu‘wﬁh
—— o) “This completes your GitLab setup.

COMP1110 Lab 1

Purpose

e warc
‘oursa uors. Plsasa maks the mostof e oppartny,

Tasks

1. Sotup your GitLab account

Logintoa and gotoGtlen

You snould e your student 0 and yous rormal password

sersona oy wih.

Thiscompletssyour i ab setup.

Australian

Univers Intellid Git Integration S1

University

Intellid Git Integration

* Create a new repository:
— VCS->Import into Version Control->Create Git Repository...

« Clone an existing repository:
— VCS->Checkout from Version Control->Git...

« Other operations:
— VCS
— VCS->Git
— right mouse click -> Git

5% Australian
PG & National
¥

University

-

> C—

ﬁt“'ty Revision Control 32

Git Concepts

e Commit (noun)

« Staging (IntelliJ allows you to more or less ignore this, so we will)
v Commit (atomically commit changes to your local repo)

v Push (push outstanding local changes to a remote repo)

v Pull (pull new changes from a remote repo)

v Update (update your working version)

* Merge

* Reset and Revert

Australian
Uﬁi‘ivt%?é‘,i'ty Revision Control 32

Git Commits

Captures a set of changes (including modifications, additions and deletions)
that may span multiple files.

* Globally uniqgue commit ID (large hexadecimal number)

e Parent — child relationship (based on changeset ID)
— Single parent, single child is simple case merg
— Multiple children indicates a branch F“ [l verge branch "ash’
— Multiple parents indicates a merge [l rodified validity check for ti

* A push sends commits, a pull gets commits

branch update name of Task 5 to getBc

® COmmitS are Usua”y never deleted I remnve Tsuroc code; new Task &

5Icele-tc|r1 for GetBonusPointTest

Australian
Uﬁi‘ivt%?é‘,i'ty Revision Control 32

A Little More on Update

Update will by default take you to the “HEAD” (the most recent
known commit).

You can, however, “update” to any particular revision, moving
yourself back and forward in time. To do this, you need to specify
the revision.

In Intellid you can do this by double-clicking on the revision (VCS ->
Git -> Show History, then select the revision)

ﬁt“'ty Revision Control 32

Branches and Merging

A branch occurs when a commit has more than one child.
A merge is special commit with two parents (thus uniting branches).

If branches are conflicting (changes to the same file), those conflicts
must be resolved before merging.

ﬁt“'ty Revision Control 32

Amend Reset and Revert

You can amend a commit message with amend

You can reset your local state to a particular commit (throwing away
un-pushed changes whether committed or) with reset.

You can also revert any particular commit. This amounts to applying
a counteracting commit.

ﬁt“'ty Revision Control 32

When All Else Fails

THIS 15 GIT: IT TRACKS COLLABORATIVE. LORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

Co0L. HOU DO WEUSE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM To SYRC P
IF YOO GET ERRORS, SAVE. YOUR LJORK
ELSELHERE, DELETE THE PROJECT,
AND DOUNLOAD A FRESH COPY.

%\m

Australian

eéf,’ National

=Y

University

S3

Search COMP1110

Mcnday: S2, 53, Jg, 04, 05, BS
Labs: L3

Deliverables: DXC, D24
Homework: Jg, 04

Friday: X1, X2, B6

CoOMP1110
Schedule
Learning Objectives
Deadlines
Email

I Coede of Conduct

Academic Integrity

RELATED SITES

Fiazza

Software Development Teams

& » Code of Conduct

Code of Conduct

You have two primary responsibilities:

* Promote an inclusive, collaborative learning environment.
+ Take action when others do not.

Professionally, we adhere to ACM'’s Code of Ethics. More broadly, a course like COMP1110 involves
reflection, collaboration, and communication. Computer science has a checkered history with respect to
inclusion — in corporate environments, in our classrooms, and in the products we create. We strive to
promote characteristics of transparency and inclusivity that reflect what we hope our field becomes
{and not necessarily what it has been or is now).

Above all, be kind.

We reject behaviour that strays into harassment, no matter how mild. Harassment refers to offensive
verbal or written comments in reference to gender, sexual orientation, disability, physical appearance,

race, or religion; sexual images in public spaces; deliberate intimidation, stalking, following, harassing

photography or recording, sustained disruption of class meetings, inappropriate physical contact, and

unwelcome sexual attention.

If you feel someone is violating these principles (for example, with a joke that could be interpreted as
sexist, racist, or exclusionary), it is your responsibility to speak up! If the behaviour persists, send a
private message to your course convener to explain the situation. We will preserve your anonymity.

{This code of conduct was developed by Evan Peck of Bucknell University. Portions of this code of
conduct are adapted from Dr. Lorena A. Barba)

1 - 7
at S'tjm(tpred Prog i i

TDD and Junit S4

Test Driven Development (TDD)

TDD “red, green, refactor”

Create test that defines new requirements
Ensure test fails

Write code to support new requirement
Run tests to ensure code is correct

Then refactor and improve

Repeat

Key element of agile programming

2

TDD and JUnit S4

Junit

Unit testing for Java
* Developed by Kent Beck

— Father of extreme programming movement
* Integrated into IntelliJ

 Useful for:
— TDD (Test driven development)
— Bug isolation and regression testing
* Precisely identify the bug with a unit test
» Use test to ensure that the bug is not reintroduced

TDD and JUnit S4

Junit

« Methods marked with cTest will be tested

« When JUnit is called on a class, all tests are run and a report is
generated (a failed test does not stop execution of subsequent tests).
« JUnit has a rich set of annotations that can be used to configure the

testing environment, including:
— @Test, @Ignore, (@BRefore, @BeforeClass, (@After,
@AfterClass

» JUnit can check that an exception is thrown if that is expected in a certain case
— @Test (expected = ArithmeticException)

~Australian
S/ National
i U

niversity

ﬁ\t“'ty COMP1510 Software Engineering S5

Software Engineering

Very roughly:
Software engineering is concerned with the efficient and timely
delivery of software that meets stated requirements.

Australian

Uﬁ?‘v%’:é‘i'ty COMP1510 Software Engineering S5

Software Engineering

Software project success rates:

Success 10-30%
Challenged 50-75%
Failed 10-30%

Source: Dan Galorath, Software Project Failure Costs Billions. Better Estimation & Planning Can Help, 2008

Australian

Uﬁ}‘v‘é?f:}i'ty COMP1510 Software Engineering S5

Software Engineering: Financial Costs
Ariane 5 Failure, ~$500M, 1996

The error which ultimately led to the destruction of

the Ariane 5 launcher about 40 seconds after lift off

on its maiden flight was clearly identified in the

report of the investigating committee [1]: a program

segment for converting a floating point number to a |

signed 16 bit integer was executed with an input

data value outside the range representable by a

signed 16 bit integer. This run time error (out of

range, overflow), which arose in both the active and

the backup computers at about the same time, was

detected and both computers shut themselves

down. This resulted in the total loss of attitude

control. The Ariane 5 turned uncontrollably and

aerodynamic forces broke the vehicle apart. This

breakup was detected by an on-board monitor

which ignited the explosive charges to destroy the

vehicle in the air. Ironically, the result of this format

conversion was no longer needed after lift off. |
Robert L. Baber 2002

Introduction to Software Systems 1110/1140/1510/6710

Australian
National
University

COMP1510 Software Engineering

S5

Software Engineering: Financial Costs
Queensland Health Payroll, ~$500M, 2008-2012

MAGAZINE MUL

AEROSPACE BIOMEDICAL ' COMPUTING CONSUMER ELECTRONICS ENERGY

risk}factor

| BLOGS // THE RISK FACTOR

A Mismanaged Australian Payroll System Is One of
the Worst IT Projects Ever

POSTED BY: ROBERT N. CHARETTE / WED, JUNE 13, 2012
=2 £ 1AL in BESHESY -+ BT

I have blogged about some spectacularly

i T projects,
such as the UK FiReControl fiasco, the US Secure
Border Initiative debacle, and New York City's
CityTime scandal. But one that continues to fascinate
me is the saga of the Queensland Health payroll
system, which will likely play out for at least five more

years.

According to Australian news stories like these at the Delimiter and the Australian, an
auditreport (PDF) by the consulting company KPMG into the status of the payroll
system indicates that it will cost another A$220.5 million—on top of the A$311 million
already spent—to fix nine priority items that prevent the payroll of the 85,000 or so

Qi Health from being without massive manual
intervention. Currently, the audit report states, 1,010 payroll staff are [still] required

tn mnrfarm avar N0 NNN manial Araasssan an an anramn Af 09 N0N farme ta Anfiine

The views expresse
&nd do not represent o

[....] anaudit reportby the consulting company
KPMG into the status of the payroll system
indicates that it will cost another A$220.5
million—on top of the A$311 million already
spent—to fix nine priority items that preventthe
payroll of the 85,000 or so Queensland Health
employees from being calculated without
massive manual intervention.

[...] back in 2008, the original costof the payroll
system developmentwas pegged atA$6.19
million (fixed price), which has steadily grown as
problems such as the massive overpaymentor
underpaymentofemployee salaries ran
rampant.

Robert Charette, IEEE Spectrum 2012

ction to Software Systems 1110/1140/1510/6710

=

Australian
National
University

COMP1510 Software Engineering S5

Software Engineering: Financial Costs

Facebook IPO, ~$?77B, 2012

Bloomberg Our Company | Professional | Anywhere

HOME QUICK NEWS OPINION MARKETDATA PERSONAL FINANCE [RISCN POLITICS SUST]

Bloomberg View's Paula Dwyer and Francis Wilkinson blog
Convention specches. Watch live TV coverage =a

LIVENOW

Nasdaq Chief Blames Software For Delayed
Facebook Debut

3AMET

By Nina Mehta - May 22, 20
(5T I
Nasdaq OMX Group Inc. (NDAQ), under scrutiny after shares of Facebook Inc. were hit by
delays and mishandled orders on its first day, blamed “poor design” in the software it uses for
driving auctions in initial public offerings.

3 COMMENTS + QUEUE

Computer systems used to establish the opening price were overwhelmed by order
cancellations and updates during the “biggest IPO cross in the history of mankind," Nasdaq
Chief Executive Officer Robert Greifeld, 54, said yesterday in a conference call with reporters.
Nasdaq's systems fell into a “loop” that kept the second-largest U.S. stock venue operator from
opening the shares on time following the $16 billion deal.

While the errors were resolved and Facebook completed its
offering, the day was another setback for equity exchanges
trying to erase the memory of the botched IPO in March by

o Bats Global Markets Inc., another bourse owner. Nasdaq's
issues contributed to disappointment among investors as

@ Facebook (FB)'s stock plunged as much as 14 percent today.

' “It's amazing that both Bats and Nasdaq unfortunately failed in
% aninglorious way,” William Karsh, the former chief operating
officer at Direct Edge Holdings LLC, an exchange operator that
. competes with Nasdag, said in a telephone interview
yesterday. “It proves that technology isn't infallible. There are
$0 many moving parts that things can go wrong. That's the
lesson we learn.”

Nasdaq OMX Group Inc [...] blamed “poordesign”
in the software it uses for driving auctions in initial
public offerings. Computer systems used fo
establish the opening price were overwhelmed by
ordercancellations and updates|[...]. Nasdaq’s
systems fell into a “loop”that kept the second-
largestU.S. stock venue operator from opening
the shareson time following the $16 billion deal.

“Its amazing that both Bats and Nasdaq
unfortunately failed in an inglorious way,” William
Karsh, the former chief operating officer at Direct
Edge Holdings LLC, an exchange operatorthat
competes with Nasdaq, said in a telephone
interview yesterday. “It provesthat technology
isn’tinfallible. There are so many moving parts
that things can go wrong. That’s the lesson we
learn.”

Bloomberg 22/5/2012

stems 1110/1140/1510/6710

/ﬁ‘tl'ty COMP1510 Software Engineering S5

Software Engineering: Human Costs
Missile Defense Failure, 25/2/91, 28 Dead

[...] the Patriot's failure was at leastin part caused
by a software flaw. Hitting the incoming Iraqi Scud
missile was within the capability ofthe Patriot
system, yetit missed.[..] Yetto characterize this
failure as a bug or programming lapse misses a
largerpoint.

This failure can be seen as boneheaded software
management. The case can be made that the
problem s better traced to a framework flaw. [...]
More to the point, a suitable test framework would
have detected the flaw, using the same compilers
used in the Patriot and without impugning the
Skills of the Patriot developerteam, who may we
have excelled in other aspects of that complex
software project.

Mark Underwood, Technorati 1/11/2009

Introduction to Software Systems 1110/1140/1510/6710

Australian

Uﬁ?‘v%’:é‘i'ty COMP1510 Software Engineering S5

Software Engineering: Human Costs
AF447,1/6/2009, 228 Dead 02:12:27 PNF You are climbing,

Vs Stall Stall
PNF You are descending, descending descending
02:12:30 PF | am descending?
PNF Descend!
02:12:32 PIC No, you are climbing
02:12:33 PF Here, | am climbing, okay, right so lets descend (or okay we are de
02:12:42 PF OK, we are in TOGA
02:12:42 PF On the altitude where are we?
02:12:44 PIC this is not possible
02:12:45 PF On alti(tude) we are where?
02:12:45 PNF ~ What do you mean on altitude?
PF Yes, yes, yes, | am descending there, no?
PNF Yes, you are descending.
PIC Hey, you are in.... put the wings level,
PNF Put the wings level!
PF That is what | am trying to do
PIC Put the wings level
02:12:59 PF | am at the limit of, with the warping
PIC The rudder
02:13:25 PF What, how is it that we are continuing to descend at the limit there’
02:13:28 PNF Try to find what you can do with the controls up there, The primarie
02:13:32 PF At level 100
02:13:36 PF 9000 ft
02:13:38 PIC Carefull with the rudder!

Transcripts from BAE, via avherald

Australian

Uﬁ?‘v%‘:é‘i'ty COMP1510 Software Engineering S5

Software Engineering: Human Costs
AF447,1/6/2009, 228 Dead 02:13:38 PIC Carefull with the rudder!

02:13:39 PNF Climb, climb. Climb, climb
02:13:40 PF But | am at the limit of the nose since a while
PIC No, no, no, don't climb
PNF So descend
02:13:45 PNF So, give me the controls, to me the controls.
PF Go ahead, you have the controls, we are still on TOGA
02:14:05 PIC Careful, you are nose high (cabres?)
PNF | am nose high?
PF Well, we need to, we are at 4000 ft
02:14:18 PIC Go, Pull
PF Go, Pull pullpull
02:14:26 PIC Ten degrees pitch

Transcripts from BAE, via avherald

- The lack of a clear display in the cockpit of the airspeed inconsistencies identified by the computers;
- The crew not taking into account the stall warning, which could have been due to:

-- The appearance at the beginning of the event of transient wamings that could be considered as spurious,
- The absence of any visual information to confirm the approach-to-stall after the loss of the limit speeds,

- Flight Director indications that may led the crew to believe that their actions were appropriate, even though they were not,

Findings from BAE, via avherald

ﬁ\t“'ty COMP1510 Software Engineering S5

Key Facets of Software Engineering

* Requirements

* Design

* Implementation

» Testing

* Quality

* Maintenance

« Configuration Management

ﬁ\t“'ty COMP1510 Software Development Models S6

The Waterfall Model and “Big Design Up Front”

Benington 1956, Royce 1979, et al

These emphasize getting design absolutely right before progressing
the development. Waterfall applies this to all phases: each each
must be finalized before moving to the next.

Waterfall stages:
— Requirements
— Design
— Implementation
— Verification
— Maintenance

ﬁ\t“'ty COMP1510 Software Development Models S6

The Spiral Model

Barry Bohem, 1986

This model is iterative, unlike the waterfall model.

Each iteration includes steps like those in the waterfall model. The
spiral model is based on prototyping and iterative refinement.

ﬁ\t“'ty COMP1510 Software Development Models S6

Agile Development

Beck et al 2001
Agile Manifesto

value-driven We are uncovering better ways of _
developing software by doing it and helping
rather than others do it. Through this work we have

come to value:

Individuals and interactions over
processes and tools

) Working software over comprehensive
dynamic documentation

Customer collaboration over contract
negotiation

static Responding to change over following a
plan

That is, while there is value in the itemson
the right, we value the items on the left
more.

plan-driven

rather than

Beck et al 2001

Australian
National
University

COMP1510 Software Development Models

S6

Formal Methods

Rigorous mathematical approach to
verifying correctness of
Implementation.

Requires

» Formal specification

» Verification of implementation

« Theorem proving assistance
(interactive theorem provers).

DOI1:10.1145/1743546.1743574

seL4: Formal Verification of an
Operating-System Kernel

By Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanskd, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood

Abstract
We report on the formal, machine-checked verification o(
the seL4

hardware mechanisms and needing to run in privileged
mode. All OS services are then implemented as normal pro-
grams, running entirely in (unprivileged) user mode, and

its C i ion. We assume ofcompllﬂ', from the TCB. Previous

assembly code, hardware, and boot code. of mi resulted in
L4 is a third of L4 tion overheads that made them unattractive compared to
comprising 8700 lines of C and 600 lmzs of assembler. Its | monolithic kernels. Modern design and implementation
to other high 14 have managed to reduced this overhead to very

kernels. competitive limits.

We prove that the implementation always strictly follows problem
our high-level abstract specification of kernel behavior. This | more tractable. A well des)gned hlgh performance micro-
i design. am‘l ion safety | kernel, such as the various ives of the L4 micro-
er nditwill | kernel family, consists of the order of 10,000 lines of code
never perform an unsafe operation. Tt also implies much | (10kloc). This radical reduction to a bare minimum comes
ill behavein | with a price in complexity. It results in a high degree of

every possible situation.

1. INTRODUCTION

Almost every paper on formal verification starts with the
that this
leads to errors, and that this is a pmb]em for mission and
safety critical software. We agree, as do most.

Here, we report on the full formal verification of a eriti-
cal system from a high-level model down to very low-level
C code. We do not pretend that this solves all of the soft-
ware complexity or error problems. We do think that our
approach will work for similar systems. The main message
we wish to convey is that a formally verified commercial-
grade, general-purpose microkernel now exists, and that
formal verification is possible and feasible on code sizes
of about 10,000 lines of C. It is not cheap; we spent signifi-
cant effort on the verification, but it appears cost-effective
and more affordable than other methods that achieve lower
degrees of trustworthiness.

To build a truly trustworthy system, one needs to start
at the operating system (OS) and the most critical part of
the OS is its kernel. The kernel is defined as the software
that executes in the privileged mode of the hardware,
meaning that there can be no protection from faults
oceurring in the kernel, and every single bug can poten-
tially cause arbitrary damage. The kernel is a mandatory
part of a system’s trusted computing base (TCB)—the part
of the system that can bypass security.” ing this

interdependency between different parts of the kernel, as
indicated in Figure 1. Despite this increased complexity
in low-level code, we have demonstrated that with mod-
ern techniques and careful design, an OS microkernel is
entirely within the realm of full formal verification.

Figure 1. Call graph of the seL4 microkernel. Vertices represent
functions, and edges invocations.

TCB i the core concept behind microkernels, an idea that
goes back 40 years.

A microkernel, as opposed to the more traditional mono-
lithic design of contemporary mainstream OS kernels,
is reduced to just the bare minimum of code wrapping

The original version of this paper was published in
the Proceedings of the 22nd ACM SIGOPS Symposium on
Operating Systems Principles, Oct. 2009.

JUNE 2010 | VOL.53 | NO.6 | COMMUNICATIONS OF THE AcM 107

Australian

Uﬁ?‘v%’:é‘i'ty COMP1510 Software Development Models S6

Which Approach?

Often viewed as a religious question... e
Balancing Agility
and Discipline
A Guide for the Perplexed

Here’'s Boehm & Turner’s take:

rrrrrrrrrrr
Grady Booch - Alistair Cockburn - Arthur Pyster

Agile home ground Plan-driven home ground Formal methods

Low criticality High criticality Extreme criticality

Senior developers Junior developers Senior developers

Requirements change often Requirements do notchange often Limited requirements, limited features
Small number of developers Large number of developers Requirements that can be modeled
Culture thatresponds tochange Culture that demands order Extreme quality

i A
b AN N (y ., 2
| B '8

m ¢ [ff%ifi‘,:}

-.1:-"“."
-
,:.,.4

Lan_dmark Pu_bllcatlo 'S

. s

AL

Australian

Uﬁ?‘v%’:é‘i'ty COMP1510 Software Engineering Landmarks
The Mythical Man Month,

Fred Brooks, 1975

Brooks’law: “Adding manpowerto a late project makes it later.”

Brooks’ experience leading the development of IBM’s OS/360.
Much of what Brooks describes are what we now call ‘anti-patterns’.

* Adding manpower to a late project makes it later
— Large complex projects are communications-intensive
— Adding new people is very costly in terms of communications
— The communications overhead will eventually dominate
» Second system effect
— Second implementation is dangerous
— Tend to want to incorporate all the ideas discarded as impractical

» Scheduling

— “Q: How does a project getone year late? A: One day at a time!”

ﬁ\t“'ty COMP1510 Software Engineering Landmarks S7

No Silver Bullet

Fred Brooks, 1986

“building software will always be hard. There is inherently no silver bullet.”

“Software entities are more complex for their size than perhaps any other human
construct.”

“Despite progress in restricting and simplifying software structures, they remain
inherently unvisualizable, and thus do not permit the mind to use some of its

most powerful conceptual tools”

Australian

Uﬁ?‘v%’:%'ty COMP1510 Software Engineering Landmarks

No Silver Bullet,

Fred Brooks, 1986

Accidental Complexity: artifacts of production of s/w

Essential Complexity: inherentin the nature of the s/w
— difficulty in communicating among team: product flaws etc
— difficulty in enumerating and understanding all states: unreliability
— difficulty of invoking function: software is hard to use
— difficulty of extending programs: unanticipated states, security flaws

ﬁ\t“'ty COMP1510 Software Engineering Landmarks S7

Design Patterns: Elements of Reusable OO Software

Gamma, Helm, Johnson, Vlissides, 1994 (aka “The Gang of Four”)

A long history of using patterns in engineering.

The GoF identify 23 software design patterns:
* 5 creational (create objects)

— Prototype creates an object by cloning an existing one.
« 7 Structural (describe object composition)

— Proxy functions as an interface to something else.

11 Behavioral (describe communication between objects)
— Visitor separates algorithm from structure.

Australian
oS>/ National

Uvesy COMP1510 Software Engineering Landmarks S7

The Five Orders of Ignorance
Phillip Armour, 2000

“the hard part of building systems is not building them, it’s knowing what to build”

“If we view systems development as the acquisition of knowledge, we can also
view it as the reduction or elimination of ignorance.”

Australian

S7

Uﬁ?‘v%’:é‘i'ty COMP1510 Software Engineering Landmarks

The Five Orders of Ignorance
Phillip Armour, 2000

Oth Order Ignorance: Lack of Ignorance. | have 00! when |
(probably) know something.

1st Order Ignorance: Lack of Knowledge. | have 10/ when | don't
know something. With 101 we have the question in a well-factored
form.

2nd Order Ignorance: Lack of Awareness. | have 201 when |
don't know that | don't know something.

3rd Order Ignorance: Lack of Process. | have 30! when | don't
know a suitably efficient way to find out | don't know that | don't know
something.

4th Order Ignorance: Meta-ignorance. | have 401 when | don't
know about the Five Orders of Ignorance.

