
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

METRICS

Week:
3 of 12

A/Prof Alex Potanin and Dr Melina Vidoni

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS2

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

SOFTWARE QUALITY

3 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

• Quality, simplistically, means that a product should meet its
specification.
• This is problematical for software systems
• There is a tension between customer quality requirements (efficiency, reliability, etc.)

and developer quality requirements (maintainability, reusability, etc.);
• Some quality requirements are difficult to specify in an unambiguous way;

• Software specifications are usually incomplete and often inconsistent.

• The focus may be ‘fitness for purpose’ rather than specification
conformance.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS4

Software Quality

CRICOS PROVIDER #00120C

• Has the software been properly tested?
• Is the software sufficiently dependable to be put into use?
• Is the performance of the software acceptable for normal use?
• Is the software usable?
• Is the software well-structured and understandable?
• Have programming and documentation standards been followed in

the development process?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS5

Software fitness for purpose

CRICOS PROVIDER #00120C

• The subjective quality of a software system is largely based on its
non-functional characteristics.
• This reflects practical user experience – if the software’s

functionality is not what is expected, then users will often just
work around this and find other ways to do what they want to do.
• However, if the software is unreliable or too slow, then it is

practically impossible for them to achieve their goals.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS6

Non-functional characteristics

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS7

Software quality attributes

Safety Understandability Portability

Security Testability Usability

Reliability Adaptability Reusability

Resilience Modularity Efficiency

Robustness Complexity Learnability

CRICOS PROVIDER #00120C

• It is not possible for any system to be optimized for all of these
attributes – for example, improving robustness may lead to loss of
performance.
• The quality plan should therefore define the most important

quality attributes for the software that is being developed.
• The plan should also include a definition of the quality assessment

process, an agreed way of assessing whether some quality, such as
maintainability or robustness, is present in the product.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS8

Quality conflicts

CRICOS PROVIDER #00120C

• The quality of a developed product is influenced by the quality of
the production process.
• This is important in software development as some product quality

attributes are hard to assess.
• However, there is a very complex and poorly understood

relationship between software processes and product quality.
• The application of individual skills and experience is particularly important in software

development;
• External factors such as the novelty of an application or the need for an accelerated

development schedule may impair product quality.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS9

Process and product quality

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS10

Process-based quality

Define process Develop
product

Assess product
quality

Standardize
process

Improve
process

Quality
OK

No Yes

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS11

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS12

CRICOS PROVIDER #00120C

• Quality managers should aim to develop a ‘quality culture’ where
everyone responsible for software development is committed to
achieving a high level of product quality.
• They should encourage teams to take responsibility for the quality

of their work and to develop new approaches to quality
improvement.
• They should support people who are interested in the intangible

aspects of quality and encourage professional behavior in all team
members.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS13

Quality Culture

CRICOS PROVIDER #00120C

SOFTWARE STANDARDS

14 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

• Standards define the required attributes of a product or process.
They play an important role in quality management.
• Standards may be international, national, organizational or project

standards.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS15

Software standards

CRICOS PROVIDER #00120C

• Encapsulation of best practice- avoids repetition of past mistakes.
• They are a framework for defining what quality means in a

particular setting i.e. that organization’s view of quality.
• They provide continuity - new staff can understand the

organisation by understanding the standards that are used.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS16

Importance of standards

CRICOS PROVIDER #00120C

• Product standards
• Apply to the software product being developed. They include document standards,

such as the structure of requirements documents, documentation standards, such as a
standard comment header for an object class definition, and coding standards, which
define how a programming language should be used.

• Process standards
• These define the processes that should be followed during software development.

Process standards may include definitions of specification, design and validation
processes, process support tools and a description of the documents that should be
written during these processes.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS17

Product and process standards

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS18

Product and process standards

Product standards Process standards
Design review form Design review conduct

Requirements document
structure

Submission of new code for
system building

Method header format Version release process

Java programming style Project plan approval process

Project plan format Change control process

Change request form Test recording process

CRICOS PROVIDER #00120C

• They may not be seen as relevant and up-to-date by software
engineers.
• They often involve too much bureaucratic form filling.
• If they are unsupported by software tools, tedious form filling

work is often involved to maintain the documentation associated
with the standards.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS19

Problems with standards

CRICOS PROVIDER #00120C

• Involve practitioners in development. Engineers should understand
the rationale underlying a standard.
• Review standards and their usage regularly.

Standards can quickly become outdated and this reduces their
credibility amongst practitioners.
• Detailed standards should have specialized tool

support. Excessive clerical work is the most
significant complaint against standards.
• Web-based forms are not good enough.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS20

Standards development

CRICOS PROVIDER #00120C

• An international set of standards that can be used as a basis for
developing quality management systems.
• ISO 9001, the most general of these standards, applies to

organizations that design, develop and maintain products,
including software.
• The ISO 9001 standard is a framework for developing software

standards.
• It sets out general quality principles, describes quality processes in general and lays

out the organizational standards and procedures that should be defined. These should
be documented in an organizational quality manual.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS21

ISO 9001 standards framework

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS22

ISO 9001 core processes

Business
acquisition

Design and
development

TestProduction and
delivery

Service and
support

Business
management

Inventory
management

Configuration
management

Supporting
processes

Supplier
management

Product
delivery processes

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS23

ISO 9001 and quality management

Project 1
quality plan

Project 2
quality plan

Project 3
quality plan

Project quality
management

Organization
quality manual

ISO 9001
quality models

Organization
quality process

is used to develop instantiated as

instantiated as

documents

Supports

CRICOS PROVIDER #00120C

• Quality standards and procedures should be documented in an
organisational quality manual.
• An external body may certify that an organisation’s quality manual

conforms to ISO 9000 standards.
• Some customers require suppliers to be ISO 9000 certified

although the need for flexibility here is increasingly recognised.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS24

ISO 9001 certification

CRICOS PROVIDER #00120C

• The ISO 9001 certification is inadequate because it defines quality to be
the conformance to standards.
• It takes no account of quality as experienced by users of the software.

For example, a company could define test coverage standards specifying
that all methods in objects must be called at least once.
• Unfortunately, this standard can be met by incomplete software testing

that does not include tests with different method parameters. So long as
the defined testing procedures are followed and test records maintained,
the company could be ISO 9001 certified.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS25

Software quality and ISO9001

CRICOS PROVIDER #00120C

• Concerned with ensuring that the required level of quality is
achieved in a software product.
• Three principal concerns:
• At the organizational level, quality management is concerned with establishing a

framework of organizational processes and standards that will lead to high-quality
software.

• At the project level, quality management involves the application of specific quality
processes and checking that these planned processes have been followed.

• At the project level, quality management is also concerned with establishing a quality
plan for a project. The quality plan should set out the quality goals for the project and
define what processes and standards are to be used.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS26

Software quality management

CRICOS PROVIDER #00120C

• Quality management provides an independent check on the
software development process.
• The quality management process checks the project deliverables

to ensure that they are consistent with organizational standards
and goals
• The quality team should be independent from the development

team so that they can take an objective view of the software. This
allows them to report on software quality without being
influenced by software development issues.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS27

Quality management activities

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS28

Quality management and software
development

Software development
process

Quality management
process

D1 D2 D3 D4 D5

Standards and
procedures

Quality
plan Quality review reports

CRICOS PROVIDER #00120C

• A quality plan sets out the desired product qualities and how these
are assessed and defines the most significant quality attributes.
• The quality plan should define the quality assessment process.
• It should set out which organisational standards should be applied

and, where necessary, define new standards to be used.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS29

Quality planning

CRICOS PROVIDER #00120C

• Quality plan structure
• Product introduction;
• Product plans;

• Process descriptions;
• Quality goals;

• Risks and risk management.

• Quality plans should be short, succinct documents
• If they are too long, no-one will read them.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS30

Quality plans

CRICOS PROVIDER #00120C

• Quality management is particularly important for large, complex
systems. The quality documentation is a record of progress and
supports continuity of development as the development team
changes.
• For smaller systems, quality management needs less

documentation and should focus on establishing a quality culture.
• Techniques have to evolve when agile development is used.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS31

Scope of quality management

CRICOS PROVIDER #00120C

SOFTWARE MEASUREMENT

32 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

• Software measurement is concerned with deriving a numeric value
for an attribute of a software product or process.
• This allows for objective comparisons between techniques and

processes.
• Although some companies have introduced measurement

programmes, most organisations still don’t make systematic use of
software measurement.
• There are few established standards in this area.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS33

Software measurement

CRICOS PROVIDER #00120C

• Any type of measurement which relates to a software system, process or
related documentation
• Lines of code in a program, the Fog index, number of person-days required to develop a

component.

• Allow the software and the software process to
be quantified.
• May be used to predict product attributes or to control the software

process.
• Product metrics can be used for general predictions or to identify

anomalous components.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS34

Software metric

CRICOS PROVIDER #00120C

• The time taken for a particular process to be completed
• This can be the total time devoted to the process, calendar time, the time spent on the

process by particular engineers, and so on.

• The resources required for a particular process
• Resources might include total effort in person-days, travel costs or computer resources.

• The number of occurrences of a particular event
• Examples of events that might be monitored include the number of defects discovered

during code inspection, the number of requirements changes requested, the number
of bug reports in a delivered system and the average number of lines of code modified
in response to a requirements change.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS35

Types of process metric

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS36

Predictor and control measurements

Management
decisions

Control metric
measurements

Software
process

Predictor metric
measurements

Software
product

CRICOS PROVIDER #00120C

• To assign a value to system quality attributes
• By measuring the characteristics of system components, such as their cyclomatic

complexity, and then aggregating these measurements, you can assess system quality
attributes, such as maintainability.

• To identify the system components whose quality is sub-standard
• Measurements can identify individual components with characteristics that deviate

from the norm. For example, you can measure components to discover those with the
highest complexity. These are most likely to contain bugs because the complexity
makes them harder to understand.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS37

Use of measurements

CRICOS PROVIDER #00120C

• A software property can be measured accurately.
• The relationship exists between what we can

measure and what we want to know. We can only measure
internal attributes but are often more interested in external
software attributes.
• This relationship has been formalised and

validated.
• It may be difficult to relate what can be measured to desirable

external quality attributes.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS38

Metrics assumptions

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS39

Relationships between internal and
external software

Reliability

Depth of inheritance tree

Cyclomatic complexity

Program size in lines
of code

Number of error
messages

Length of user manual

Maintainability

Usability

Reusability

External quality attributes Internal attributes

CRICOS PROVIDER #00120C

• It is impossible to quantify the return on investment of introducing an
organizational metrics program.
• There are no standards for software metrics or standardized processes

for measurement and analysis.
• In many companies, software processes are not standardized and are

poorly defined and controlled.
• Most work on software measurement has focused on code-based

metrics and plan-driven development processes. However, more and
more software is now developed by configuring ERP systems or COTS.
• Introducing measurement adds additional overhead to processes.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS40

Problems with measurement in industry

CRICOS PROVIDER #00120C

• Software measurement and metrics are the basis of empirical
software engineering.
• This is a research area in which experiments on software systems

and the collection of data about real projects has been used to
form and validate hypotheses about software engineering
methods and techniques.
• Research on empirical software engineering, this has not had a

significant impact on software engineering practice.
• It is difficult to relate generic research to a project that is different

from the research study.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS41

Empirical software engineering

CRICOS PROVIDER #00120C

• A quality metric should be a predictor of product quality.
• Classes of product metric
• Dynamic metrics which are collected by measurements made of a program in

execution;
• Static metrics which are collected by measurements made of the system

representations;

• Dynamic metrics help assess efficiency and reliability
• Static metrics help assess complexity, understandability and maintainability.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS42

Product metrics

CRICOS PROVIDER #00120C

• Dynamic metrics are closely related to software quality attributes
• It is relatively easy to measure the response time of a system (performance attribute)

or the number of failures (reliability attribute).

• Static metrics have an indirect relationship with quality attributes
• You need to try and derive a relationship between these metrics and properties such

as complexity, understandability and maintainability.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS43

Dynamic and static metrics

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS44

Static software product metrics

Software metric Description
Fan-in/Fan-out Fan-in is a measure of the number of functions or

methods that call another function or method (say X). Fan-
out is the number of functions that are called by function
X. A high value for fan-in means that X is tightly coupled to
the rest of the design and changes to X will have
extensive knock-on effects. A high value for fan-out
suggests that the overall complexity of X may be high
because of the complexity of the control logic needed to
coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the
larger the size of the code of a component, the more
complex and error-prone that component is likely to be.
Length of code has been shown to be one of the most
reliable metrics for predicting error-proneness in
components.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS45

Static software product metrics

Software metric Description
Cyclomatic complexity This is a measure of the control complexity of a program.

This control complexity may be related to program
understandability. I discuss cyclomatic complexity in
Chapter 8.

Length of identifiers This is a measure of the average length of identifiers
(names for variables, classes, methods, etc.) in a
program. The longer the identifiers, the more likely they
are to be meaningful and hence the more
understandable the program.

Depth of conditional
nesting

This is a measure of the depth of nesting of if-statements
in a program. Deeply nested if-statements are hard to
understand and potentially error-prone.

Fog index This is a measure of the average length of words and
sentences in documents. The higher the value of a
document’s Fog index, the more difficult the document is
to understand.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS46

The CK object-oriented metrics suite

Object-oriented
metric

Description

Weighted methods
per class (WMC)

This is the number of methods in each class, weighted by the complexity of
each method. Therefore, a simple method may have a complexity of 1, and a
large and complex method a much higher value. The larger the value for this
metric, the more complex the object class. Complex objects are more likely
to be difficult to understand. They may not be logically cohesive, so cannot
be reused effectively as superclasses in an inheritance tree.

Depth of
inheritance tree
(DIT)

This represents the number of discrete levels in the inheritance tree where
subclasses inherit attributes and operations (methods) from superclasses.
The deeper the inheritance tree, the more complex the design. Many object
classes may have to be understood to understand the object classes at the
leaves of the tree.

Number of children
(NOC)

This is a measure of the number of immediate subclasses in a class. It
measures the breadth of a class hierarchy, whereas DIT measures its depth.
A high value for NOC may indicate greater reuse. It may mean that more
effort should be made in validating base classes because of the number of
subclasses that depend on them.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS47

The CK object-oriented metrics suite

Object-oriented
metric

Description

Coupling between
object classes
(CBO)

Classes are coupled when methods in one class use methods or instance
variables defined in a different class. CBO is a measure of how much
coupling exists. A high value for CBO means that classes are highly
dependent, and therefore it is more likely that changing one class will affect
other classes in the program.

Response for a
class (RFC)

RFC is a measure of the number of methods that could potentially be
executed in response to a message received by an object of that class.
Again, RFC is related to complexity. The higher the value for RFC, the more
complex a class and hence the more likely it is that it will include errors.

Lack of cohesion
in methods
(LCOM)

LCOM is calculated by considering pairs of methods in a class. LCOM is the
difference between the number of method pairs without shared attributes and
the number of method pairs with shared attributes. The value of this metric
has been widely debated and it exists in several variations. It is not clear if it
really adds any additional, useful information over and above that provided
by other metrics.

CRICOS PROVIDER #00120C

• System component can be analyzed separately using a range of
metrics.
• The values of these metrics may then compared for different

components and, perhaps, with historical measurement data
collected on previous projects.
• Anomalous measurements, which deviate significantly from the

norm, may imply that there are problems with the quality of these
components.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS48

Software component analysis

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS49

The process of product measurement

Measure
component

characteristics

Identify
anomalous

measurements

Analyze
anomalous

components

Select
components to

be assessed

Choose
measurements

to be made

CRICOS PROVIDER #00120C

• When you collect quantitative data about software and software
processes, you have to analyze that data to understand its
meaning.
• It is easy to misinterpret data and to make inferences that are

incorrect.
• You cannot simply look at the data on its own. You must also

consider the context where the data is collected.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS50

Measurement ambiguity

CRICOS PROVIDER #00120C

• Reducing the number of faults in a program leads to an increased
number of help desk calls
• The program is now thought of as more reliable and so has a wider more diverse

market. The percentage of users who call the help desk may have decreased but the
total may increase;

• A more reliable system is used in a different way from a system where users work
around the faults. This leads to more help desk calls.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS51

Measurement surprises

CRICOS PROVIDER #00120C

• Processes and products that are being measured are not insulated
from their environment.
• The business environment is constantly changing and it is

impossible to avoid changes to work practice just because they
may make comparisons of data invalid.
• Data about human activities cannot always be taken at face value.

The reasons why a measured value changes are often ambiguous.
These reasons must be investigated in detail before drawing
conclusions from any measurements that have been made.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS52

Software context

CRICOS PROVIDER #00120C

Software analytics is analytics on software data for managers and
software engineers with the aim of empowering software
development individuals and teams to gain and share insight from
their data to make better decisions.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS53

Software analytics

CRICOS PROVIDER #00120C

• The automated collection of user data by software product
companies when their product is used.
• If the software fails, information about the failure and the state of the system can be

sent over the Internet from the user’s computer to servers run by the product
developer.

• The use of open source software available on platforms such as
Sourceforge and GitHub and open source repositories of software
engineering data.
• The source code of open source software is available for automated analysis and this

can sometimes be linked with data in the open source repository.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS54

Software analytics enablers

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS55

Qualitas Corpus

CRICOS PROVIDER #00120C

• Tools should be easy to use as managers are unlikely to have
experience with analysis.
• Tools should run quickly and produce concise outputs rather than

large volumes of information.
• Tools should make many measurements using as many parameters

as possible. It is impossible to predict in advance what insights
might emerge.
• Tools should be interactive and allow managers and developers to

explore the analyses.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS56

Analytics tool use

CRICOS PROVIDER #00120C

• Software analytics is still immature and it is too early to say what
effect it will have.
• Not only are there general problems of ‘big data’ processing, our

knowledge depends on collected data from large companies.
• This is primarily from software products and it is unclear if the tools and techniques

that are appropriate for products can also be used with custom software.

• Small companies are unlikely to invest in the data collection
systems that are required for automated analysis so may not be
able to use software analytics.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS57

Status of software analytics

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS58

Software Engineering: Principles,
practices (technical and non-technical)
for confidently building high-quality
software.

What does this mean?
How do we know?

à Measurement and
metrics are key concerns.

CRICOS PROVIDER #00120C

CASE STUDY:
THE MAINTAINABILITY INDEX

59 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

“Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability. Color coded
ratings can be used to quickly identify trouble spots in your code. A green rating is between 20
and 100 and indicates that the code has good maintainability. A yellow rating is between 10
and 19 and indicates that the code is moderately maintainable. A red rating is a rating
between 0 and 9 and indicates low maintainability.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS60

Visual Studio (since 2007)

CRICOS PROVIDER #00120C

• Index between 0 and 100 representing the relative ease of maintaining the
code.
• Higher is better. Color coded by number:
• Green: between 20 and 100
• Yellow: between 10 and 19

• Red: between 0 and 9.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS61

Visual Studio (since 2007)

CRICOS PROVIDER #00120C

• "We noticed that as code tended toward 0 it was clearly hard to
maintain code and the difference between code at 0 and some
negative value was not useful."
• "The desire was that if the index showed red then we would be

saying with a high degree of confidence that there was an issue
with the code.”
• http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maint

ainability-index-range-and-meaning.aspx

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS62

Design rationale (from MSDN blog)

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

CRICOS PROVIDER #00120C

Maintainability Index =
MAX(0,(171 –

5.2 * log(Halstead Volume) –
0.23 * (Cyclomatic Complexity) –
16.2 * log(Lines of Code)
)*100 / 171)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS63

The Index

CRICOS PROVIDER #00120C

• 1992 Paper at the International Conference on Software
Maintenance by Paul Oman and Jack Hagemeister

• Developers rated a number of HP systems in C and Pascal
• Statistical regression analysis to find key factors among 40 metrics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS64

Origins

COM = percentage of comments

CRICOS PROVIDER #00120C

Maintainability Index =
MAX(0,(171 –

5.2 * log(Halstead Volume) –
0.23 * (Cyclomatic Complexity) –
16.2 * log(Lines of Code)
)*100 / 171)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS65

The Index

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS66

Mini Break in Monday Lecture

CRICOS PROVIDER #00120C

• Metric seems attractive
• Easy to compute
• Often seems to match intuition
• Parameters seem almost arbitrary, calibrated in single small study

code (few developers, unclear statistical significance)
• All metrics related to size: just measure lines of code?
• Original 1992 C/Pascal programs potentially quite different from

Java/JS/C# code

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS67

Thoughts?

CRICOS PROVIDER #00120C

CASE STUDY:
AUTONOMOUS VEHICLE SAFETY

68 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS69

How can we judge AV software quality
(e.g. safety)?

CRICOS PROVIDER #00120C

• Amount of code executed during
testing.
• Statement coverage, line

coverage, branch coverage, etc.
• E.g. 75% branch coverage à 3/4

if-else outcomes have been
executed

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS70

Test coverage

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS71

Model Accuracy

• Train machine-learning models
on labelled data (sensor data +
ground truth).
• Compute accuracy on a separate

labelled test set.
• E.g. 90% accuracy implies that

object recognition is right for
90% of the test inputs.

CRICOS PROVIDER #00120C

• Frequency of crashes/fatalities
• Per 1000 rides, per million miles,

per month (in the news)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS72

Failure Rate

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS73

Mileage

Source: waymo.com/safety (September 2021)

CRICOS PROVIDER #00120C

Think of “pros” and “cons” for using various quality metrics to judge
AV software.
• Test coverage
• Model accuracy
• Failure rate
• Mileage
• Size of codebase
• Age of codebase
• Time of most recent change
• Frequency of code releases
• Number of contributors
• Amount of code documentation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS74

Activity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS75

STOP sign or 45 speed limit?

“Robust Physical-World Attacks on Deep Learning Models” by Kevin Eykholt et al. CVPR’18

CRICOS PROVIDER #00120C

MEASUREMENT FOR DECISION MAKING IN
SOFTWARE DEVELOPMENT

76 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

• Measurement is the empirical, objective assignment of numbers,
according to a rule derived from a model or theory, to attributes of
objects or events with the intent of describing them. – Craner,
Bond, “Software Engineering Metrics: What Do They Measure and
How Do We Know?”
• A quantitatively expressed reduction of uncertainty based on one

or more observations. – Hubbard, “How to Measure Anything …”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS77

What is Measurement?

CRICOS PROVIDER #00120C

• IEEE 1061 definition: “A software quality metric is a function
whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which the
software possesses a given attribute that affects its quality.”
• Metrics have been proposed for many quality attributes; may

define own metrics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS78

Software Quality Metrics

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS79

External attributes: Measuring Quality

McCall model has 41 metrics to measure 23 quality
criteria from 11 factors

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS80

Decomposition of Metrics

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

CRICOS PROVIDER #00120C

EXAMPLES:
CODE COMPLEXITY

81 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

• Easy to measure

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS82

Lines of Code

> wc –l file1 file2…

LOC projects
450 Expression Evaluator

2,000 Sudoku
100,000 Apache Maven
500,000 Git

3,000,000 MySQL
15,000,000 gcc
50,000.000 Windows 10

2,000,000,000 Google (MonoRepo)

CRICOS PROVIDER #00120C

• Ignore comments and empty lines
• Ignore lines < 2 characters
• Pretty print source code first
• Count statements (logical lines of code)
• See also: cloc

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS83

Normalising Lines of Code

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS84

Normalisation per Language

Language Statement factor
(productivity)

Line factor

C 1 1
C++ 2.5 1
Fortran 2 0.8
Java 2.5 1.5
Perl 6 6
Smalltalk 6 6.25
Python 6 6.5

Source: “Code Complete: A Practical Handbook of Software Construction“, S. McConnell, Microsoft Press (2004)
and http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html u.a.

http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

CRICOS PROVIDER #00120C

• Introduced by Maurice Howard
Halstead in 1977
• Halstead Volume =

number of operators/operands *
log2(number of distinct

operators/operands)
• Approximates size of elements and

vocabulary

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS85

Halstead Volume

CRICOS PROVIDER #00120C

main() {
int a, b, c, avg;
scanf("%d %d %d", &a, &b, &c);
avg = (a + b + c) / 3;
printf("avg = %d", avg);

}

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS86

Halstead Volume – Example (Do At Home)

Operators/Operands: main, (), {}, int, a, b, c, avg, scanf,
(), "…", &, a, &, b, &, c, avg, =, a, +, b, +, c, (), /, 3,

printf, (), "…", avg

CRICOS PROVIDER #00120C

• Proposed by McCabe 1976
• Based on control flow graph,

measures linearly independent
paths through a program
• ~= number of decisions
• Number of test cases needed to achieve

branch coverage

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS87

Cyclomatic Complexity

“For each module, either limit cyclomatic complexity to [X] or
provide a written explanation of why the limit was exceeded.”

– NIST Structured Testing methodology

if (c1) {
f1();

} else {
f2();

}
if (c2) {

f3();
} else {

f4();
}

CRICOS PROVIDER #00120C

• Number of Methods per Class
• Depth of Inheritance Tree
• Number of Child Classes
• Coupling between Object Classes
• Calls to Methods in Unrelated Classes
• …

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS88

Object-Oriented Metrics

CRICOS PROVIDER #00120C

• Scalability
• Security
• Extensibility
• Documentation
• Performance
• Consistency
• Portability

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS89

What software qualities do we care
about? (examples)

• Installability
• Maintainability
• Functionality (e.g., data

integrity)
• Availability
• Ease of use

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS90

What process qualities do we care about?
(examples)
• On-time release
• Development speed
• Meeting efficiency
• Conformance to processes
• Time spent on rework
• Reliability of predictions
• Fairness in decision making

• Measure time, costs, actions,
resources, and quality of work
packages; compare with
predictions
• Use information from issue

trackers, communication
networks, team structures, etc…

CRICOS PROVIDER #00120C

• If X is something we care about, then X, by definition, must be
detectable.
• How could we care about things like “quality,” “risk,” “security,” or “public image” if

these things were totally undetectable, directly or indirectly?

• If we have reason to care about some unknown quantity, it is because we think it
corresponds to desirable or undesirable results in some way.

• If X is detectable, then it must be detectable in some amount.
• If you can observe a thing at all, you can observe more of it or less of it

• If we can observe it in some amount, then it must be measurable.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS91

Everything is measurable

D. Hubbard, How to Measure Anything, 2010

CRICOS PROVIDER #00120C

• Fund project?
• More testing?
• Fast enough? Secure enough?
• Code quality sufficient?
• Which feature to focus on?
• Developer bonus?
• Time and cost estimation? Predictions reliable?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS92

Measurement for Decision Making

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS93

Trend analyses

CRICOS PROVIDER #00120C

• Monitor many projects or many modules, get typical values for
metrics
• Report deviations

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS94

Benchmark-Based Metrics

CRICOS PROVIDER #00120C

• IBM in the 60’s: Would account
in “person-months”
e.g. Team of 2 working 3 months
= 6 person-months
• LoC ~ Person-months ~ $$$
• Brooks: “Adding manpower to a

late software project makes it
later.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS95

Example: Antipattern in effort estimation

CRICOS PROVIDER #00120C

• What properties do we care about, and how do we measure it?
• What is being measured? Does it (to what degree) capture the

thing you care about? What are its limitations?
• How should it be incorporated into process? Check in gate? Once a

month? Etc.
• What are potentially negative side effects or incentives?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS96

Questions to consider

CRICOS PROVIDER #00120C

MEASUREMENT IS DIFFICULT

97 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS98

CRICOS PROVIDER #00120C

• A known observational bias.
• People tend to look for something only where it’s easiest to do so.
• If you drop your keys at night, you’ll tend to look for it under streetlights.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS99

The streetlight effect

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS100

CRICOS PROVIDER #00120C

• Bad statistics: A basic misunderstanding of measurement theory
and what is being measured.
• Bad decisions: The incorrect use of measurement data, leading to

unintended side effects.
• Bad incentives: Disregard for the human factors, or how the

cultural change of taking measurements will affect people.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS101

What could possibly go wrong?

CRICOS PROVIDER #00120C

• In 1995, the UK Committee on Safety of Medicines issued the
following warning: "third-generation oral contraceptive pills
increased the risk of potentially life-threatening blood clots in the
legs or lungs twofold -- that is, by 100 percent”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS102

Lies, damned lies, and…

CRICOS PROVIDER #00120C

• “…of every 7,000 women who took the earlier, second-generation
oral contraceptive pills, about one had a thrombosis; this number
increased to two among women who took third-generation pills…”
• “…The absolute risk increase was only one in 7,000, whereas the

relative increase (among women who developed blood clots) was
indeed 100 percent.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS103

…statistics

CRICOS PROVIDER #00120C

• Scale: the type of data being measured.
• The scale dictates what sorts of analysis/arithmetic is legitimate or

meaningful.
• Your options are:
• Nominal: categories
• Ordinal: order, but no magnitude.

• Interval: order, magnitude, but no zero.
• Ratio: Order, magnitude, and zero.

• Absolute: special case of ratio.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS104

Measurement scales

CRICOS PROVIDER #00120C

• Entities classified with respect to a certain attribute. Categories are jointly
exhaustive and mutually exclusive.
• No implied order between categories!

• Categories can be represented by labels or numbers; however, they do not
represent a magnitude, arithmetic operation have no meaning.
• Can be compared for identity or distinction, and measurements can be obtained

by counting the frequencies in each category. Data can also be aggregated.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS105

Nominal/categorical scale

Entity Attribute Categories

Application Purpose E-commerce, CRM, Finance

Application Language Java, Python, C++, C#

Fault Source assignment, checking, algorithm, function, interface, timing

CRICOS PROVIDER #00120C

• Ordered categories: maps a measured attribute to an ordered set of values, but no
information about the magnitude of the differences between elements.

• Measurements can be represented by labels or numbers, BUT: if numbers are used, they
do not represent a magnitude.
• Honestly, try not to do that. It eliminates temptation.

• You cannot: add, subtract, perform averages, etc (arithmetic operations are out).

• You can: compare with operators (like “less than” or “greater than”), create ranks for the
purposes of rank correlations (Spearman’s coefficient, Kendall’s τ).

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS106

Ordinal scale

Entity Attribute Values

Application Complexity Very Low, Low, Average, High, Very High

Fault Severity 1 – Cosmetic, 2 – Moderate, 3 – Major, 4 – Critical

CRICOS PROVIDER #00120C

• Has order (like ordinal scale) and magnitude.
• The intervals between two consecutive integers represent equal amounts of the attribute

being measured.

• Does NOT have a zero: 0 is an arbitrary point, and doesn’t correspond to
the absence of a quantity.
• Most arithmetic (addition, subtraction) is OK, as are mean and dispersion

measurements, as are Pearson correlations. Ratios are not meaningful.
• Ex: The temperature yesterday was 64 F, and today is 32 F. Is today twice as cold as

yesterday?

• Incremental variables (quantity as of today – quantity at an earlier time)
and preferences are commonly measured in interval scales.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS107

Interval scale

CRICOS PROVIDER #00120C

• An interval scale that has a true zero that actually represents the
absence of the quantity being measured.
• All arithmetic is meaningful.
• Absolute scale is a special case, measurement simply made by

counting the number of elements in the object.
• Takes the form “number of occurrences of X in the entity.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS108

Ratio Scale

Entity Attribute Values

Project Effort Real numbers

Software Complexity Cyclomatic complexity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS109

Summary of Scales

CRICOS PROVIDER #00120C

UNDERSTAND
YOUR DATA

110 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

• Provide a theory (from domain knowledge, independent of data)

• Show correlation
• Demonstrate ability to predict new cases (replicate/validate)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS111

For Causation

http://xkcd.com/552/

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS112

Spurious Correlations

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS113

Confounding variables

• If you look only at the coffee consumption → cancer relationship, you can get very
misleading results

• Smoking is a confounder

Coffee
consumption

Smoking

Cancer

Associations

Causal relationship

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS114

“We found that there is a low to moderate correlation between
coverage and effectiveness when the number of test cases in the
suite is controlled for.”

CRICOS PROVIDER #00120C

• Construct validity – Are we measuring what we intended to
measure?
• Internal validity – The extent to which the measurement can be

used to explain some other characteristic of the entity being
measured
• External validity – Concerns the generalization of the findings to

contexts and environments, other than the one studied

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS115

Measurements validity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS116

Measurements reliability

CRICOS PROVIDER #00120C

• Extent to which a measurement yields similar results when applied
multiple times
• Goal is to reduce uncertainty, increase consistency
• Example: Performance
• Time, memory usage
• Cache misses, I/O operations, instruction execution count, etc.

• Law of large numbers
• Taking multiple measurements to reduce error

• Trade-off with cost

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS117

Measurements reliability

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS118

The McNamara Fallacy

CRICOS PROVIDER #00120C

• Measure whatever can
be easily measured.
• Disregard that which cannot be measured easily.
• Presume that which cannot be measured easily is not important.
• Presume that which cannot be measured easily does not exist.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS119

The McNamara Fallacy

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-numbers-
in-education/

CRICOS PROVIDER #00120C

There seems to be a general misunderstanding to the effect that a
mathematical model cannot be undertaken until every constant and
functional relationship is known to high accuracy. This often leads to
the omission of admittedly highly significant factors (most of the
“intangibles” influences on decisions) because these are
unmeasured or unmeasurable. To omit such variables is equivalent
to saying that they have zero effect... Probably the only value known
to be wrong…

J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS120

The McNamara Fallacy

CRICOS PROVIDER #00120C

• Defect density = Known bugs / line of code
• System spoilage = time to fix post-release defects /

total system development time
• Post-release vs pre-release
• What counted as defect? Severity? Relevance?
• What size metric used?
• What quality assurance mechanisms used?
• Little reference data publicly available;

typically 2-10 defects/1000 lines of code
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS121

Defect Density

CRICOS PROVIDER #00120C

DISCUSSION: MEASURING USABILITY

122 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

• Automated measures on code repositories
• Use or collect process data
• Instrument program (e.g., in-field crash reports)
• Surveys, interviews, controlled experiments, expert judgment
• Statistical analysis of sample

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS123

Example: Measuring usability.

CRICOS PROVIDER #00120C

METRICS AND INCENTIVES

124 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

“When a measure becomes a target, it ceases to be a good
measure.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS125

Goodhart’s Law

http://dilbert.com/strips/comic/1995-11-13/

CRICOS PROVIDER #00120C

• Lines of code per day?
• Industry average 10-50 lines/day
• Debugging + rework ca. 50% of time

• Function/object/application points per month
• Bugs fixed?
• Milestones reached?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS126

Productivity Metrics

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS127

Stack Ranking

CRICOS PROVIDER #00120C

• What happens when developer bonuses are based on
• Lines of code per day?
• Amount of documentation written?

• Low number of reported bugs in their code?
• Low number of open bugs in their code?

• High number of fixed bugs?
• Accuracy of time estimates?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS128

Incentivizing Productivity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS129

Autonomy
Mastery
Purpose

Can extinguish intrinsic
motivation

Can diminish performance
Can crush creativity

Can crowd out good behavior
Can encourage cheating,

shortcuts, and unethical behavior
Can become addictive

Can foster short-term thinking

CRICOS PROVIDER #00120C

• Most software metrics are controversial
• Usually only plausibility arguments, rarely rigorously validated
• Cyclomatic complexity was repeatedly refuted and is still used
• “Similar to the attempt of measuring the intelligence of a person in terms of the weight or

circumference of the brain”

• Use carefully!
• Code size dominates many metrics
• Avoid claims about human factors (e.g., readability) and quality, unless

validated
• Calibrate metrics in project history and other projects
• Metrics can be gamed; you get what you measure

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS130

Warning

CRICOS PROVIDER #00120C

• Metrics tracked using tools and processes (process metrics like
time, or code metrics like defects in a bug database).
• Expert assessment or human-subject experiments (controlled

experiments, talk-aloud protocols).
• Mining software repositories, defect databases, especially for

trend analysis or defect prediction.
• Some success e.g., as reported by Microsoft Research

• Benchmarking (especially for performance).

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS131

(Some) strategies

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS132

End of Monday Lecture/Start of Tuesday Lecture

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS133

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

• Set solid measurement objectives and plans.
• Make measurement part of the process.
• Gain a thorough understanding of measurement.
• Focus on cultural issues.
• Create a safe environment to collect and report true data.
• Cultivate a predisposition to change.
• Develop a complementary suite of measures.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS134

Factors in a successful
measurement program

Carol A. Dekkers and Patricia A. McQuaid,
“The Dangers of Using Software Metrics to
(Mis)Manage”, 2002.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS135

Kaner’s questions when choosing a metric

1. What is the purpose of this measure?

2. What is the scope of this measure?
3. What attribute are you trying to measure?

4. What is the attribute’s natural scale?

5. What is the attribute’s natural variability?

6. What instrument are you using to
measure the attribute, and what reading
do you take from the instrument?

7. What is the instrument’s natural scale?

8. What is the reading’s natural variability
(normally called measurement error)?

9. What is the attribute’s relationship to the
instrument?

10. What are the natural and foreseeable
side effects of using this instrument? Cem Kaner and Walter P. Bond. “Software Engineering Metrics: What

Do They Measure and How Do We Know?” 2004

CRICOS PROVIDER #00120C

• Sommerville. Software Engineering. Edition 7/8, Sections 26.1,
27.5, and 28.3
• Hubbard. How to measure anything: Finding the value of

intangibles in business. John Wiley & Sons, 2014. Chapter 3
• Kaner and Bond. Software Engineering Metrics: What Do They

Measure and How Do We Know? METRICS 2004
• Fenton and Pfleeger. Software Metrics: A rigorous & practical

approach. Thomson Publishing 1997

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS136

Further Reading on Metrics

CRICOS PROVIDER #00120C

"Suppose you could work with a team of data scientists and data
analysts who specialize in studying how software is developed.
Please list up to five questions you would like them to answer. Why
do you want to know? What would you do with the answers?"

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS137

Microsoft Survey (2014)

Andrew Begel and Thomas Zimmermann. "Analyze this! 145 questions for data scientists in software
engineering." ICSE. 2014.

CRICOS PROVIDER #00120C

• How do users typically use my application?
• What parts of a software product are most used and/or loved by

customers?
• How effective are the quality gates we run at checkin?
• How can we improve collaboration and sharing between teams?
• What are best key performance indicators (KPIs) for monitoring

services?
• What is the impact of a code change or requirements change to

the project and tests?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS138

Top Questions

CRICOS PROVIDER #00120C

• What is the impact of tools on productivity?
• How do I avoid reinventing the wheel by sharing and/or searching

for code?
• What are the common patterns of execution in my application?
• How well does test coverage correspond to actual code usage by

our customers?
• What kinds of mistakes do developers make in their software?

Which ones are the most common?
• What are effective metrics for ship quality?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS139

Top Questions

CRICOS PROVIDER #00120C

• Which individual measures correlate with employee productivity (e.g.,
employee age, tenure, engineering skills, education, promotion velocity,
IQ)?
• Which coding measures correlate with employee productivity (e.g., lines

of code, time it take to build the software, a particular tool set, pair
programming, number of hours of coding per day, language)?
• What metrics can be used to compare employees?
• How can we measure the productivity of a Microsoft employee?
• Is the number of bugs a good measure of developer effectiveness?
• Can I generate 100% test coverage?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS140

Bottom Questions

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS141

Context: big ole pile of code.

…do something to it.
Like: Fix a bug, implement a feature, write a test…

CRICOS PROVIDER #00120C

You cannot understand the
entire system.

142

CRICOS PROVIDER #00120C

• To develop and test a working model or set of working hypotheses
about how (some part of) a system works.
• Working model: an understanding of the pieces of the system

(components), and the way they interact (connections).
• It is common in practice to consult documentation, experts.
• Prior knowledge/experience is also useful (see: frameworks,

architectural patterns, design patterns).
• Today, we focus on individual information gathering via

observation, probes, and hypothesis testing.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS143

Goal

CRICOS PROVIDER #00120C

TWO PROPERTIES OF SOFTWARE THAT ARE USUALLY
ANNOYING THAT WE CAN TAKE ADVANTAGE OF

144 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS145

Software constantly changes
à Software is easy to change!

Is this wall
load-

bearing?

Guess so!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS146

Software is a big redundant mess
à there’s always something to copy

as a starting point!

CRICOS PROVIDER #00120C

CODE MUST RUN TO DO STUFF!!
Key insight in grokking unfamiliar code/apps

147 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS148

1. If code must run,
it must have a beginning

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS149

2. If code must run,
it must exist

CRICOS PROVIDER #00120C

Some trigger that causes code to run.
• Locally installed programs: run cmd, OS launch, I/O events, etc.

• Local applications in dev: build + run, test, deploy (e.g. docker)

• Web apps server-side: Browser sends HTTP request (GET/POST)

• Web apps client-side: Browser runs JavaScript

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS150

The Beginning: Entry Points

CRICOS PROVIDER #00120C

Helps to identify what’s knowable and what’s changeable
• Locally installed programs: run cmd, OS launch, I/O events, etc.
• Binaries (machine code) on your computer

• Local applications in dev: build + run, test, deploy (e.g. docker)
• Source code in repository (+ dependencies)

• Web apps server-side: Browser sends HTTP request (GET/POST)
• Code runs remotely (you can only observe outputs)

• Web apps client-side: Browser runs JavaScript
• Source code is downloaded and run locally (see: browser dev tools!)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS151

Code must exist. But where?

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS152

Side note on build systems

• Basically the same across languages / platforms
• Make, maven, gradle, grunt, bazel, etc.

• Goal: Source code + dependencies + config à runnables
• Common themes:
• Dependency management (repositories, versions, etc)
• Config management (platform-specific features, file/dir names, IP addresses, port

numbers, etc)
• Runnables (start, stop?, test)
• Almost always have ‘debug’ mode and help (‘-h’ or similar)

• Almost always have one or more “build” directories (= not part of source repo)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS153

Can running code be
Probed/Understood/Edited?

Transparent OpaqueTranslucent

Source code built locally Server-side apps running remotelyBinaries running locally

Open source Closed source Open source Closed source

(P+U) (P) (U) -

(P+U+E)

CRICOS PROVIDER #00120C

BUT FIRST! AN EXERCISE.
NYTimes quiz: http://bit.ly/problemQuiz

154

http://bit.ly/problemQuiz

CRICOS PROVIDER #00120C

Beware of cognitive biases.

155

CRICOS PROVIDER #00120C

• anchoring
• confirmation bias
• congruence bias: The tendency to test hypotheses exclusively through direct

testing, instead of testing possible alternative hypotheses
• conservatism (belief revision)
• curse of knowledge
• default effect
• expectation bias
• overconfidence effect
• plan continuation bias
• pro innovation bias
• recency illusion

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS156

Beware of cognitive biases

https://en.wikipedia.org/wiki/List_of_cognitive_biases

https://en.wikipedia.org/wiki/List_of_cognitive_biases

CRICOS PROVIDER #00120C

CREATING A WORKING MODEL OF UNFAMILIAR
CODE

157

Source code built locally

CRICOS PROVIDER #00120C

• Basic needs:
• Code/file search and navigation
• Code editing (probes)
• Execution of code, tests
• Observation of output (observation)

• Many choices here on tools! Depends on circumstance.
• grep/find/etc. Having a command on Unix tools is invaluable
• A decent IDE
• Debugger
• Test frameworks + coverage reports
• Google (or your favorite web search engine)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS158

Static (+dynamic) information gathering

At the command line: grep and find!
(Do a web search for tutorials)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS159

Static Information Gathering

• Please configure and use a
legitimate IDE.
• No favorites? We recommend VSCode and

IntelliJ IDEA.

• Why?
• “search all files”

• “jump to definition”
• “download dependency source”

• Remember: real software is too
complicated to keep in your head.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS160

Consider documentation/tutorials judiciously

• Great for discovering entry points!
• Can teach you about general

structure, architecture.
• Forward-reference to architectural

patterns!

• As you gain experience, you will
recognize more of these, and you
will immediately know something
about how the program works.
• For example, next time you work

on a mobile app…

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS161

Consider documentation/tutorials judiciously

https://medium.com/swlh/elements-of-mvc-in-react-9382de427c09

CRICOS PROVIDER #00120C

• Key principle 1: change is a useful primitive to inform mental models
about a software system.
• Key principle 2: systems almost always provide some kind of starting

point.
• Put simply:

1. Build it.
2. Run it.
3. Change it.
4. Run it again.

• Can provide information both bottom up or top down, depending on the
situation.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS162

Dynamic Information Gathering

CRICOS PROVIDER #00120C

• Printf(“here”)
• Turning on automatic debug info logging
• Breakpoints
• Sophisiticated debugging tools
• Breakpoint, eval, step through / step over
• (Some tools even support remote debugging)

• Delete debugging (equivalent of `kill -9`)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS163

Probes - Observe, control or “lightly”
manipulate execution

CRICOS PROVIDER #00120C

• Confirm that you can build and run the code.
• Ideally both using the tests provided, and by hand.

• Confirm that the code you are running is the code you built.
• Confirm that you can make an externally visible change.
• How? Where? Starting points:
• Run an existing test, change it.
• Write a new test.
• Change the code, write or rerun a test that should notice the change.

• Make sure the changes persist if you want them to.
• Distinguish between source repository and build/deploy directories.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS164

Step 0: sanity check basic model +
hypotheses.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS165

CRICOS PROVIDER #00120C

• Collecting and analysing data on the human side of things
• As organisations grow in size linearly, communication costs grow

quadratically (see The Mythical Man-Month or even Amdahl’s Law
in Computer Architecture J)
• Could try to make each individual more productive?
• How to measure individual productivity and identify inefficiencies

without taking up too many resources?
• Google has a team of researchers dedicated to engineering

productivity

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS166

Notes on Measuring Engineering Productivity

CRICOS PROVIDER #00120C

• Building on social sciences, allows to study human side like
personal motivations, incentives, and strategies for complex tasks
• What should we measure?
• How to use metrics to track improvements and productivity?
• Case Study around the process of C++ and Java language teams

around Code Readability
• Is the time spent on the readability process worthwhile?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS167

Notes on Measuring Engineering Productivity

CRICOS PROVIDER #00120C

• Is It Even Worth Measuring?
• Triage Questions:

1. What result are you expecting, and why?
2. If the data supports your expected result, what action will be taken?
3. If we get a negative result, will appropriate action be taken?
4. Who is going to decide to take action on the result, and when would they do it?
• Reasons NOT to measure can be:
• You can’t afford to change the process/tools right now
• Any results will soon be invalidated by other factors
• The results will be used only as vanity metrics to support something you were going to do

anyway
• The only metrics available are not precise enough to measure the problem and can be

confounded by other factors

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS168

Notes on Measuring Engineering Productivity

CRICOS PROVIDER #00120C

• At Google they use Goals/Signals/Metrics (GSM) framework to
guide metrics creation:
• A goal is a desired end result. It’s phrased in terms of what you want to understand at

a high level and should not contain references to specific ways to measure it.

• A signal is how you might know that you’ve achieved the end result. Signals are things
we would like to measure, but they might not be measurable themselves.

• A metric is a proxy for a signal. It is the thing we actually can measure. It might not be
the ideal measurement, but it is something that we believe is close enough.

• GSM encourages us to select metrics based on their ability to
measure the original goals

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS169

Notes on Measuring Engineering Productivity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS170

Goals (Capturing Productivity Trade Offs)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS171

Goals (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS172

Signals (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS173

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS174

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS175

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS176

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS177

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS178

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

• Study showed that it was overall worthwhile:
• Engineers who had achieved readability were satisfied with the process and felt they

learned from it

• Logs showed that they also had their code reviewed faster and submitted it faster,
even accounting for no longer needing as many reviewers

• Study also showed places for improvement with the process: engineers identified pain
points

• The language teams improved the tooling and process based on
the results

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS179

Case Study on Readability Outcome

CRICOS PROVIDER #00120C

• Measurement is difficult but important for decision making
• Software metrics are easy to measure but hard to interpret,

validity often not established
• Many metrics exist, often composed; pick or design suitable

metrics if needed
• Careful in use: monitoring vs incentives
• Strategies beyond metrics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS180

Key Points

CRICOS PROVIDER #00120C

• Use measurements as a decision tool to reduce uncertainty

• Understand difficulty of measurement; discuss validity of
measurements

• Provide examples of metrics for software qualities and process

• Understand limitations and dangers of decisions and incentives
based on measurements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS181

Key Points

CRICOS PROVIDER #00120C

• Software quality management is concerned with ensuring that
software has a low number of defects and that it reaches the
required standards of maintainability, reliability, portability etc.
Software standards are important for quality assurance as they
represent an identification of ‘best practice’. When developing
software, standards provide a solid foundation for building good
quality software.
• Reviews of the software process deliverables involve a team of

people who check that quality standards are being followed.
Reviews are the most widely used technique for assessing quality.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS182

Key Points

CRICOS PROVIDER #00120C

• In a program inspection or peer review, a small team systematically
checks the code. They read the code in detail and look for possible
errors and omissions. The problems detected are discussed at a
code review meeting.
• Agile quality management relies on establishing a quality culture

where the development team works together to improve software
quality.
• Software measurement can be used to gather quantitative data

about software and the software process.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS183

Key Points

CRICOS PROVIDER #00120C

• You may be able to use the values of the software metrics that are
collected to make inferences about product and process quality.
• Product quality metrics are particularly useful for highlighting

anomalous components that may have quality problems. These
components should then be analyzed in more detail.
• Software analytics is the automated analysis of large volumes of

software product and process data to discover relationships that
may provide insights for project managers and developers.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS184

Key Points

CRICOS PROVIDER #00120C

• Understand and scope the task of taking on and understanding a
new and complex piece of existing software.
• Appreciate the importance of configuring an effective IDE.
• Contrast different types of code execution environments including

local, remote, application, and libraries.
• Enumerate both static and dynamic strategies for understanding

and modifying a new codebase.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS185

Key Points

CRICOS PROVIDER #00120C

• Before measuring productivity, ask whether the result is
actionable, regardless of whether the results is positive or negative
• Select meaningful metrics using the GSM framework
• Select metrics that cover all parts of productivity (QUANTS)
• Qualitative metrics are metrics too!
• Aim to create recommendations that are built into the developer

workflow and incentives

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: METRICS186

Key Points

