
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

TESTING

Week:
8 of 12

A/Prof Alex Potanin and Dr Melina Vidoni

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

2 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING3

CRICOS PROVIDER #00120C

•Software testing is a process in which you execute your program using
data that simulates user inputs.
•You observe its behaviour to see whether or not your program is doing
what it is supposed to do.
•Tests pass if the behaviour is what you expect. Tests fail if the behaviour differs from that
expected.
• If your program does what you expect, this shows that for the inputs used, the program
behaves correctly.

•If these inputs are representative of a larger set of inputs, you can infer
that the program will behave correctly for all members of this larger input
set.

Software testing

4 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• If the behaviour of the program does not match the behaviour that you
expect, then this means that there are bugs in your program that need to
be fixed.
• There are two causes of program bugs:
• Programming errors You have accidentally included faults in your program code. For

example, a common programming error is an ‘off-by-1’ error where you make a mistake with
the upper bound of a sequence and fail to process the last element in that sequence.

• Understanding errors You have misunderstood or have been unaware of some of the details
of what the program is supposed to do. For example, if your program processes data from a
file, you may not be aware that some of this data is in the wrong format, so your program
doesn’t include code to handle this.

Program bugs

5 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Functional testing
Test the functionality of the overall system. The goals of functional testing are to discover as many bugs as possible
in the implementation of the system and to provide convincing evidence that the system is fit for its intended
purpose.

• User testing
Test that the software product is useful to and usable by end-users. You need to show that the features of the
system help users do what they want to do with the software. You should also show that users understand how to
access the software’s features and can use these features effectively.

• Performance and load testing
Test that the software works quickly and can handle the expected load placed on the system by its users. You need
to show that the response and processing time of your system is acceptable to end-users. You also need to
demonstrate that your system can handle different loads and scales gracefully as the load on the software
increases.

• Security testing
Test that the software maintains its integrity and can protect user information from theft and damage.

6 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Types of testing

CRICOS PROVIDER #00120C

• Functional testing involves developing a large set of program tests so that,
ideally, all of a program’s code is executed at least once.
• The number of tests needed obviously depends on the size and the functionality

of the application.
• For a business-focused web application, you may have to develop thousands of

tests to convince yourself that your product is ready for release to customers.
• Functional testing is a staged activity in which you initially test individual units

of code. You integrate code units with other units to create larger units then do
more testing.
• The process continues until you have created a complete system ready for

release.

Functional testing

7 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Functional testing

Feature
testing

System
testing

Release
testing

Figure 9.2 Functional testing

Unit
Testing

Start

8 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Unit testing
The aim of unit testing is to test program units in isolation. Tests should be designed to execute all of the
code in a unit at least once. Individual code units are tested by the programmer as they are developed.

• Feature testing
Code units are integrated to create features. Feature tests should test all aspects of a feature. All of the
programmers who contribute code units to a feature should be involved in its testing.

• System testing
Code units are integrated to create a working (perhaps incomplete) version of a system. The aim of system
testing is to check that there are no unexpected interactions between the features in the system. System
testing may also involve checking the responsiveness, reliability and security of the system. In large
companies, a dedicated testing team may be responsible for system testing. In small companies, this is
impractical, so product developers are also involved in system testing.

• Release testing
The system is packaged for release to customers and the release is tested to check that it operates as
expected. The software may be released as a cloud service or as a download to be installed on a
customer’s computer or mobile device. If DevOps is used, then the development team are responsible for
release testing otherwise a separate team has that responsibility.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING9

Functional testing processes

CRICOS PROVIDER #00120C

• As you develop a code unit, you should also develop tests for that code.

• A code unit is anything that has a clearly defined responsibility. It is usually a function or class
method but could be a module that includes a small number of other functions.

• Unit testing is based on a simple general principle:

• If a program unit behaves as expected for a set of inputs that have some shared characteristics, it will
behave in the same way for a larger set whose members share these characteristics.

• To test a program efficiently, you should identify sets of inputs (equivalence partitions) that will
be treated in the same way in your code.

• The equivalence partitions that you identify should not just include those containing inputs
that produce the correct values. You should also identify ‘incorrectness partitions’ where the
inputs are deliberately incorrect.

10 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Unit testing

CRICOS PROVIDER #00120C

Equivalence partitions

Set of all possible inputs

5

Partition 1, where all
inputs share characteristic C1
and some share characteristic
C2.

Partition 2, where all inputs share characteristic
C2. Some inputs also share characteristic C1.

Partition 3, where all
inputs share
characteristic C3.
Some inputs also share
characteristic C4.

Partition 4 where all inputs
share characteristic C4.
Some inputs also share
characteristics C3 or C5 but
not both

Partition 5 where all
inputs share characteristics
C4 and C5. None share
characteristic C3

 Figure 9.3 Equivalence partitions

1 2

3

4

11 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

def namecheck (s):

Checks that a name only includes alphabetic characters, - or
a single quote. Names must be between 2 and 40 characters long
quoted strings and -- are disallowed

namex = r"^[a-zA-Z][a-zA-Z-']{1,39}$"
if re.match (namex, s):

if re.search ("'.*'", s) or re.search ("--", s):
return False

else:
return True

else:
return False

A name checking function

12 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Correct names 1
The inputs only includes alphabetic characters and are between 2 and 40 characters long.

• Correct names 2
The inputs only includes alphabetic characters, hyphens or apostrophes and are between 2 and 40 characters long.

• Incorrect names 1
The inputs are between 2 and 40 characters long but include disallowed characters.

• Incorrect names 2
The inputs include allowed characters but are either a single character or are more than 40 characters long.

• Incorrect names 3
The inputs are between 2 and 40 characters long but the first character is a hyphen or an apostrophe.

• Incorrect names 4
The inputs include valid characters, are between 2 and 40 characters long, but include either a double hyphen, quoted text
or both.

13 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Equivalence partitions for
the name checking function

CRICOS PROVIDER #00120C

• Test edge cases
If your partition has upper and lower bounds (e.g. length of
strings, numbers, etc.) choose inputs at the edges of the range.
• Force errors

Choose test inputs that force the system to generate all error
messages. Choose test inputs that should generate invalid outputs.
• Fill buffers

Choose test inputs that cause all input buffers to overflow.
• Repeat yourself

Repeat the same test input or series of inputs several times.

Unit testing guidelines (1)

14 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Overflow and underflow
If your program does numeric calculations, choose test inputs that cause it to
calculate very large or very small numbers.
• Don’t forget null and zero

If your program uses pointers or strings, always test with null pointers and
strings. If you use sequences, test with an empty sequence. For numeric inputs,
always test with zero.
• Keep count

When dealing with lists and list transformation, keep count of the number of
elements in each list and check that these are consistent after each
transformation.
• One is different

If your program deals with sequences, always test with sequences that have a
single value.

Unit testing guidelines (2)

15 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING16

But, remember…

CRICOS PROVIDER #00120C

• Features have to be tested to show that the functionality is implemented
as expected and that the functionality meets the real needs of users.
• For example, if your product has a feature that allows users to login using their Google

account, then you have to check that this registers the user correctly and informs them of
what information will be shared with Google.

• You may want to check that it gives users the option to sign up for email information about
your product.

• Normally, a feature that does several things is implemented by multiple,
interacting, program units.
• These units may be implemented by different developers and all of these

developers should be involved in the feature testing process.

Feature testing

17 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Interaction tests

• These test the interactions between the units that implement the feature. The developers of the units that are
combined to make up the feature may have different understandings of what is required of that feature.

• These misunderstandings will not show up in unit tests but may only come to light when the units are integrated.

• The integration may also reveal bugs in program units, which were not exposed by unit testing.

• Usefulness tests

• These test that the feature implements what users are likely to want.

• For example, the developers of a login with Google feature may have implemented an opt-out default on registration so
that users receive all emails from a company. They must expressly choose what type of emails that they don’t want.

• What might be preferred is an opt-in default so that users choose what types of email they do want to receive.

18 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Types of feature test

CRICOS PROVIDER #00120C

• User registration
As a user, I want to be able to login without creating a new account
so that I don’t have to remember another login id and password.
• Information sharing

As a user, I want to know what information you will share with
other companies. I want to be able to cancel my registration if I
don’t want to share this information.
• Email choice

As a user, I want to be able to choose the types of email that I’ll get
from you when I register for an account.

User stories for the sign-in with Google
feature

19 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Initial login screen
Test that the screen displaying a request for Google account credentials is correctly
displayed when a user clicks on the ‘Sign-in with Google’ link. Test that the login is
completed if the user is already logged in to Google.
• Incorrect credentials

Test that the error message and retry screen is displayed if the user inputs incorrect
Google credentials.
• Shared information

Test that the information shared with Google is displayed, along with a cancel or
confirm option. Test that the registration is cancelled if the cancel option is chosen.
• Email opt-in

Test that the user is offered a menu of options for email information and can choose
multiple items to opt-in to emails. Test that the user is not registered for any emails
if no options are selected.

Feature tests for sign-in with Google

20 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• System testing involves testing the system as a whole, rather than
the individual system features.
• System testing should focus on four things:
• Testing to discover if there are unexpected and unwanted interactions between the

features in a system.
• Testing to discover if the system features work together effectively to support what

users really want to do with the system.
• Testing the system to make sure it operates in the expected way in the different

environments where it will be used.
• Testing the responsiveness, throughput, security and other quality attributes of the

system.

System and release testing

21 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• The best way to systematically test a system is to start with a set of
scenarios that describe possible uses of the system and then work
through these scenarios each time a new version of the system is
created.
• Using the scenario, you identify a set of end-to-end pathways that

users might follow when using the system.
• An end-to-end pathway is a sequence of actions from starting to

use the system for the task, through to completion of the task.

Scenario-based testing

22 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Andrew and Maria have a two year old son and a four month old daughter. They live in Scotland and they want to
have a holiday in the sunshine. However, they are concerned about the hassle of flying with young children. They
decide to try a family holiday planner product to help them choose a destination that is easy to get to and that fits
in with their childrens’ routines.

• Maria navigates to the holiday planner website and selects the ‘find a destination’ page. This presents a screen
with a number of options. She can choose a specific destination or can choose a departure airport and find all
destinations that have direct flights from that airport. She can also input the time band that she’d prefer for flights,
holiday dates and a maximum cost per person.

• Edinburgh is their closest departure airport. She chooses ‘find direct flights’. The system then presents a list of
countries that have direct flights from Edinburgh and the days when these flights operate. She selects France, Italy,
Portugal and Spain and requests further information about these flights. She then sets a filter to display flights
that leave on a Saturday or Sunday after 7.30am and arrive before 6pm.

• She also sets the maximum acceptable cost for a flight. The list of flights is pruned according to the filter and is
redisplayed. Maria then clicks on the flight she wants. This opens a tab in her browser showing a booking form for
this flight on the airline’s website.

23 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Choosing a holiday destination

CRICOS PROVIDER #00120C

1. User inputs departure airport and chooses to see only direct flights.
User quits.

2. User inputs departure airport and chooses to see all flights. User quits.
3. User chooses destination country and chooses to see all flights. User

quits.
4. User inputs departure airport and chooses to see direct flights. User

sets filter specifying departure times and prices. User quits.
5. User inputs departure airport and chooses to see direct flights. User

sets filter specifying departure times and prices. User selects a
displayed flight and clicks through to airline website. User returns to
holiday planner after booking flight.

End-to-end pathways

24 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Release testing is a type of system testing where a system that’s intended for release to customers is
tested.

• The fundamental differences between release testing and system testing are:

• Release testing tests the system in its real operational environment rather than in a test environment.
Problems commonly arise with real user data, which is sometimes more complex and less reliable than test
data.

• The aim of release testing is to decide if the system is good enough to release, not to detect bugs in the
system. Therefore, some tests that ‘fail’ may be ignored if these have minimal consequences for most users.

• Preparing a system for release involves packaging that system for deployment (e.g. in a container if it
is a cloud service) and installing software and libraries that are used by your product. You must
define configuration parameters such as the name of a root directory, the database size limit per user
and so on.

25 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Release testing

CRICOS PROVIDER #00120C

• Automated testing is based on the idea that tests should be
executable.
• An executable test includes the input data to the unit that is being

tested, the expected result and a check that the unit returns the
expected result.
• You run the test and the test passes if the unit returns the

expected result.
• Normally, you should develop hundreds or thousands of

executable tests for a software product.

Test automation

26 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

TestInterestCalculator inherits attributes and
methods from the class

TestCase in the testing framework unittest

class TestInterestCalculator (unittest.TestCase):

Define a set of unit tests where each test tests
one thing only

Tests should start with test_ and the name should
explain what is being tested

def test_zeroprincipal (self):

#Arrange - set up the test parameters

p = 0; r = 3; n = 31

result_should_be = 0

#Action - Call the method to be tested

interest = interest_calculator (p, r, n)

#Assert - test what should be true

self.assertEqual (result_should_be, interest)

27 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Test methods for an interest calculator
def test_yearly_interest (self):

#Arrange - set up the test parameters

p = 17000; r = 3; n = 365

#Action - Call the method to be tested

result_should_be = 270.36

interest = interest_calculator (p, r, n)

#Assert - test what should be true

self.assertEqual (result_should_be, interest)

CRICOS PROVIDER #00120C

• It is good practice to structure automated tests into three parts:
• Arrange You set up the system to run the test. This involves defining the test

parameters and, if necessary, mock objects that emulate the functionality of code that
has not yet been developed.

• Action You call the unit that is being tested with the test parameters.
• Assert You make an assertion about what should hold if the unit being tested has

executed successfully. In program on the previous slide, we use assertEquals, which
checks if its parameters are equal.

• If you use equivalence partitions to identify test inputs, you should
have several automated tests based on correct and incorrect
inputs from each partition.

Automated tests

28 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

import unittest

from RE_checker import namecheck

class TestNameCheck (unittest.TestCase):

def test_alphaname (self):

self.assertTrue (namecheck ('Sommerville'))

def test_doublequote (self):

self.assertFalse (namecheck ("Thisis'maliciouscode'"))

def test_namestartswithhyphen (self):

self.assertFalse (namecheck ('-Sommerville'))

def test_namestartswithquote (self):

self.assertFalse (namecheck ("'Reilly"))

29 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Executable tests for the
namecheck function

def test_nametoolong (self):

self.assertFalse (namecheck
('Thisisalongstringwithmorethen40charactersfrombeginningtoend'))

def test_nametooshort (self):

self.assertFalse (namecheck ('S'))

def test_namewithdigit (self):

self.assertFalse (namecheck('C-3PO'))

def test_namewithdoublehyphen (self):

self.assertFalse (namecheck ('--badcode'))

CRICOS PROVIDER #00120C

def test_namewithhyphen (self):

self.assertTrue (namecheck ('Washington-Wilson'))

def test_namewithinvalidchar (self):

self.assertFalse (namecheck('Sommer_ville'))

def test_namewithquote (self):

self.assertTrue (namecheck ("O'Reilly"))

def test_namewithspaces (self):

self.assertFalse (namecheck ('Washington Wilson'))

def test_shortname (self):

self.assertTrue ('Sx')

def test_thiswillfail (self):

self.assertTrue (namecheck ("O Reilly"))

30 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Executable tests for the
namecheck function

CRICOS PROVIDER #00120C

import unittest

loader = unittest.TestLoader()

#Find the test files in the current directory

tests = loader.discover('.')

#Specify the level of information provided by the test runner

testRunner = unittest.runner.TextTestRunner(verbosity=2)
testRunner.run(tests)

Code to run unit tests from files

31 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

The test pyramid

Unit tests

Feature tests

System
tests

Increased automation
Reduced costs

Figure 9.5 The test pyramid

32 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Generally, users access features through the product’s graphical user
interface (GUI).
• However, GUI-based testing is expensive to automate so it is best to

design your product so that its features can be directly accessed through
an API and not just from the user interface.
• The feature tests can then access features directly through the API

without the need for direct user interaction through the system’s GUI.
• Accessing features through an API has the additional benefit that it is

possible to re-implement the GUI without changing the functional
components of the software.

Automated feature testing

33 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Feature editing through an API

Feature 1

Feature 3 Feature 4

Feature 2

API

Browser or mobile app interface

Figure 9.6 Feature testing through an API

Feature
tests

34 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• System testing, which should follow feature testing, involves testing the
system as a surrogate user.
• As a system tester, you go through a process of selecting items from

menus, making screen selections, inputting information from the
keyboard and so on.
• You are looking for interactions between features that cause problems,

sequences of actions that lead to system crashes and so on.
• Manual system testing, when testers have to repeat sequences of

actions, is boring and error-prone. In some cases, the timing of actions is
important and is practically impossible to repeat consistently.
• To avoid these problems, testing tools have been developed that can record a series of

actions and automatically replay these when a system is retested

System testing

35 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Interaction recording and playback

System being tested

System API

Interaction
session record

User action
recording

User action
playback

Figure 9.7 Interaction recording and playback

Browser or mobile app interface

36 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Test-driven development (TDD) is an approach to program development
that is based around the general idea that you should write an
executable test or tests for code that you are writing before you write
the code.
• It was introduced by early users of the Extreme Programming agile

method, but it can be used with any incremental development approach.
• Test-driven development works best for the development of individual

program units and it is more difficult to apply to system testing.
• Even the strongest advocates of TDD accept that it is challenging to use

this approach when you are developing and testing systems with
graphical user interfaces.

Test-driven development

37 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Test-driven development

Write code stub that
will fail test

Run all
automated tests

Implement code that
should cause failing test to pass

Identify partial implementation
of functionality

Functionality
complete

Functionality
incomplete

Refactor code
if required

All tests pass

Identify new
functionality

Run all
automated tests

Test failure

Figure 9.8 Test-driven development

Start

38 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Identify partial implementation
Break down the implementation of the functionality required into
smaller mini-units. Choose one of these mini-units for implementation.
• Write mini-unit tests

Write one or more automated tests for the mini-unit that you have
chosen for implementation. The mini-unit should pass these tests if it is
properly implemented.
• Write a code stub that will fail test

Write incomplete code that will be called to implement the mini-unit.
You know this will fail.
• Run all existing automated tests

All previous tests should pass. The test for the incomplete code should
fail.

Stages of test-driven development (1)

39 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Implement code that should cause the failing test to pass
Write code to implement the mini-unit, which should cause it to
operate correctly
• Rerun all automated tests

If any tests fail, your code is probably incorrect. Keep working on it
until all tests pass.
• Refactor code if necessary

If all tests pass, you can move on to implementing the next mini-
unit. If you see ways of improving your code, you should do this
before the next stage of implementation.

Stages of test-driven development (2)

40 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• It is a systematic approach to testing in which tests are clearly linked to sections of the
program code.

• This means you can be confident that your tests cover all of the code that has been developed and that
there are no untested code sections in the delivered code. In my view, this is the most significant
benefit of TDD.

• The tests act as a written specification for the program code. In principle at least, it should be
possible to understand what the program does by reading the tests.

• Debugging is simplified because, when a program failure is observed, you can immediately link
this to the last increment of code that you added to the system.

• It is argued that TDD leads to simpler code as programmers only write code that’s necessary to
pass tests. They don’t over-engineer their code with complex features that aren’t needed.

41 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Benefits of test-driven development

CRICOS PROVIDER #00120C

• TDD discourages radical program change
I found that I was reluctant to make refactoring decisions that I knew would cause many tests to fail. I
tended to avoid radical program change for this reason.

• I focused on the tests rather than the problem I was trying to solve
A basic principle of TDD is that your design should be driven by the tests you have written. I found that I
was unconsciously redefining the problem I was trying to solve to make it easier to write tests. This meant
that I sometimes didn’t implement important checks, because it was difficult to write tests in advance of
their implementation.

• I spent too much time thinking about implementation details rather than the programming problem
Sometimes when programming, it is best to step back and look at the program as a whole rather than
focusing on implementation details. TDD encourages a focus on details that might cause tests to pass or fail
and discourages large-scale program revisions.

• It is hard to write ‘bad data’ tests
Many problems involving dealing with messy and incomplete data. It is practically impossible to anticipate
all of the data problems that might arise and write tests for these in advance. You might argue that you
should simply reject bad data but this is sometimes impractical.

42 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Sommerville’s reasons for not using TDD

CRICOS PROVIDER #00120C

• Security testing aims to find vulnerabilities that may be exploited
by an attacker and to provide convincing evidence that the system
is sufficiently secure.
• The tests should demonstrate that the system can resist attacks on

its availability, attacks that try to inject malware and attacks that
try to corrupt or steal users’ data and identity.
• Comprehensive security testing requires specialist knowledge of

software vulnerabilities and approaches to testing that can find
these vulnerabilities.

Security testing

43 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• A risk-based approach to security testing involves identifying common
risks and developing tests to demonstrate that the system protects itself
from these risks.
• You may also use automated tools that scan your system to check for

known vulnerabilities, such as unused HTTP ports being left open.
• Based on the risks that have been identified, you then design tests and

checks to see if the system is vulnerable.
• It may be possible to construct automated tests for some of these

checks, but others inevitably involve manual checking of the system’s
behaviour and its files.

Risk-based security testing

44 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Unauthorized attacker gains access to a system using authorized
credentials
• Authorized individual accesses resources that are forbidden to them
• Authentication system fails to detect unauthorized attacker
• Attacker gains access to database using SQL poisoning attack
• Improper management of HTTP session
• HTTP session cookies revealed to attacker
• Confidential data are unencrypted
• Encryption keys are leaked to potential attackers

Examples of security risks

45 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Once you have identified security risks, you then analyze them to assess
how they might arise. For example, for the first risk two slides earlier
(unauthorized attacker) there are several possibilities:
• The user has set weak passwords that can be guessed by an attacker.
• The system’s password file has been stolen and passwords discovered by attacker.
• The user has not set up two-factor authentication.
• An attacker has discovered credentials of a legitimate user through social engineering

techniques.

• You can then develop tests to check some of these possibilities.
• For example, you might run a test to check that the code that allows users to set their

passwords always checks the strength of passwords.

Risk analysis

46 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Code reviews involve one or more people examining the code to check
for errors and anomalies and discussing issues with the developer.
• If problems are identified, it is the developer’s responsibility to change

the code to fix the problems.
• Code reviews complement testing. They are effective in finding bugs that

arise through misunderstandings and bugs that may only arise when
unusual sequences of code are executed.
• Many software companies insist that all code has to go through a

process of code review before it is integrated into the product codebase.

Remember Code Reviews?

47 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Code reviews

Review preparation

Programmer

Reviewer

Programmer

Discussion

Setup
review

Prepare
code

Distribute
code/tests

Write review
report

Code checking

Prepare
to-do list

Make code
changes

Review Follow-up

Figure 9.9 Code reviews

Reviewer

Check
code

Programmer

48 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Setup review
The programmer contacts a reviewer and arranges a review date.
• Prepare code

The programmer collects the code and tests for review and annotates them
with information for the reviewer about the intended purpose of the code and
tests.
• Distribute code/tests

The programmer sends code and tests to the reviewer.
• Check code

The reviewer systematically checks the code and tests against their
understanding of what they are supposed to do.
• Write review report

The reviewer annotates the code and tests with a report of the issues to be
discussed at the review meeting.

Code review activities (1)

49 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Discussion
The reviewer and programmer discuss the issues and agree on the
actions to resolve these.
• Make to-do list

The programmer documents the outcome of the review as a to-do
list and shares this with the reviewer.
• Make code changes

The programmer modifies their code and tests to address the
issues raised in the review.

Code review activities (2)

50 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Are meaningful variable and function names used? (General)
Meaningful names make a program easier to read and understand.

• Have all data errors been considered and tests written for them? (General)
It is easy to write tests for the most common cases but it is equally important to check that the program won’t fail when presented
with incorrect data.

• Are all exceptions explicitly handled? (General)
Unhandled exceptions may cause a system to crash.

• Are default function parameters used? (Python)
Python allows default values to be set for function parameters when the function is defined. This often leads to errors when
programmers forget about or misuse them.

• Are types used consistently? (Python)
Python does not have compile-time type checking so it it is possible to assign values of different types to the same variable. This is
best avoided but, if used, it should be justified.

• Is the indentation level correct? (Python)
Python uses indentation rather than explicit brackets after conditional statements to indicate the code to be executed if the condition
is true or false. If the code is not properly indented in nested conditionals this may mean that incorrect code is executed.

51 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Part of a checklist for
a Python code review

CRICOS PROVIDER #00120C

52

Mini Break in Monday Lecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

INTRO TO QA AND TESTING (TAKE 2 J)

53 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Michael Hilton and Rohan Padhye

CRICOS PROVIDER #00120C

• What is testing?
• Execution of code on sample inputs in a controlled environment

• Principle goals:
• Validation: program meets requirements, including quality attributes.
• Defect testing: reveal failures.

• Other goals:
• Reveal bugs (main goal)

• Assess quality (hard to quantify)
• Clarify the specification, documentation

• Verify contracts

What is Testing???

54 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• What can we test for? (Software quality attributes)
• What can we not test for?
• Why should we test? What does testing achieve?
• What does testing not achieve?
• When should we test?
• And where should we run the tests?
• What should we test?
• What CAN we test?
• How should we test?
• How many ways can you test the sort() function?
• How good are our tests?
• How to measure test quality?

What is Testing???

55 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

WHAT CAN WE RUN (AUTOMATED) TESTS FOR?
(SOFTWARE QUALITY ATTRIBUTES)

56 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

WHAT CAN WE NOT (EASILY) TEST FOR?
(SOFTWARE QUALITY ATTRIBUTES)

57 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Program/system functionality:
• Execution space (white box).
• Input or requirements space (black box).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.

• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

Things we might try to test

58 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Functional errors
• Performance errors
• Deadlock
• Race conditions
• Boundary errors
• Buffer overflow
• Integration errors
• Usability errors
• Robustness errors
• Load errors

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING59

Software Errors

• Design defects
• Versioning and configuration errors
• Hardware errors
• State management errors
• Metadata errors
• Error-handling errors
• User interface errors
• API usage errors
• …

CRICOS PROVIDER #00120C

WHY SHOULD WE TEST?
(WHAT DOES TESTING HELP US ACHIEVE?)

60 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• [Low bar] Ensure that our software meets requirements, is correct, etc.
• Preventing bugs or quality degradations from being accidentally introduced in

the future
• Helps uncover unexpected behaviors that can’t be identified by reading source

code
• Increased confidence in changes (“will I break the internet with this commit?”)
• Bridges the gap between a declarative view of the system (i.e., requirements)

and an imperative view (i.e., implementation) by means of redundancy.
• Tests are executable documentation; increases code maintainability
• Forces writing testable code <-> checks software design

Value of Testing

61 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

WHAT ARE THE LIMITATIONS OF TESTING?
(WHAT DOES TESTING NOT ACHIEVE?)

62 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

"Testing shows the presence, not the absence of bugs.”
-Edsger W. Dijkstra

• Testing doesn’t really give any formal assurances
• Writing tests is hard, time consuming
• Knowing if your tests are good enough is not obvious
• Executing tests can be expensive, especially as software

complexity and configuration space grows
• Full test suite for a single large app can take several days to run

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING63

Limitations of Testing

CRICOS PROVIDER #00120C

WHEN SHOULD WE TEST?
(AND WHERE SHOULD WE RUN THE TESTS?)

64 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

65 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Tests first!
• Popular agile technique
• Write tests as specifications before code
• Never write code without a failing test
• Claims:
• Design approach toward testable design
• Think about interfaces first
• Avoid unneeded code
• Higher product quality
• Higher test suite quality
• Higher overall productivity

Test Driven Development (TDD)

66 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Common bar for contributions

Chromium

Firefox

Docker

67 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Usual model:
• Introduce regression tests for bug fixes, etc.
• Compare results as code evolves
• Code1 + TestSet à TestResults1

• Code2 + TestSet à TestResults2

• As code evolves, compare TestResults1 with TestResults2, etc.

• Benefits:
• Ensure bug fixes remain in place and bugs do not reappear.
• Reduces reliance on specifications, as <TestSet,TestResults1> acts as one.

Regression testing

68 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Continuous Integration

69 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

WHAT SHOULD WE TEST?
(WHAT CAN WE TEST?)

70 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Unit testing
• Integration testing
• System testing

Testing Levels

71 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Unit testing
• Code level, E.g. is a function implemented correctly?
• Does not require setting up a complex environment
• Integration testing
• Do components interact correctly? E.g. a feature that cuts across client and server.
• Usually requires some environment setup, but can abstract/mock out other components

that are not being tested (e.g. network)
• System testing
• Validating the whole system end-to-end (E2E)
• Requires complete deployment in a staging area, but fake data
• Testing in production
• Real data but more risks

Testing Levels

72 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

E2E

Integration

Unit

What’s a good distribution of test levels?

E2E

Integration

Unit

73 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

HOW GOOD ARE OUR TESTS?
(HOW CAN WE MEASURE TEST QUALITY?)

74 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Line coverage
• Statement coverage
• Branch coverage
• Instruction coverage
• Basic-block coverage
• Edge coverage
• Path coverage
• …

Code Coverage

‘X’ coverage = Number of ‘X’ executed / Total number of ‘X’ in program

75 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Code Coverage

76 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

We can measure coverage on almost
anything

A. Zeller, Testing and Debugging Advanced course, 2010

77 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Recall: issues with metrics and incentives
• Also: Numbers can be deceptive
• 100% coverage != exhaustively tested

• “Coverage is not strongly correlated with suite effectiveness”
• Based on empirical study on GitHub projects [Inozemtseva and Holmes, ICSE’14]

• Still, it’s a good low bar
• Code that is not executed has definitely not been tested

Beware of coverage chasing

78 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Distinguish code being tested and code being executed
• Library code >>>> Application code
• Can selectively measure coverage

• All application code >>> code being tested
• Not always easy to do this within an application

Coverage of what?

79 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• What’s better, tests that always pass or tests that always fail?
• Tests should ideally be falsifiable. Boundary determines specification
• Ideally:
• Correct implementations should pass all tests
• Buggy code should fail at least one test
• Intuition behind mutation testing

• What if tests have bugs?
• Pass on buggy code or fail on correct code

• Even worse: flaky tests
• Pass or fail on the same test case nondeterministically

• What’s the worst type of test?

Coverage != Outcome

80 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

HOW SHOULD WE TEST?

81 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Popular unit-testing framework for Java

• Easy to use

• Tool support available (Maven, Gradle, etc.)

• Can be used as design mechanism

JUnit

82 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Tests usually need an input and expected output.

• More generally, a test environment, a test harness, and a test
oracle
• Environment: Resources needed to execute a family of tests

• Harness: Triggers execution of a test case (aka entry point)
• Oracle: A mechanism for determining whether a test was successful

Basic Elements of a Test

83 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Use public APIs only
• Clearly distinguish inputs, configuration, execution, and oracle
• Be simple; avoid complex control flow such as conditionals and

loops
• Tests shouldn’t need to be frequently changed or refactored
• Definitely not as frequently as the code being tested changes

Test Design principles

84 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Snoopy oracles
• Relying on implementation state instead of observable behavior
• E.g. Checking variables or fields instead of return values

• Brittle tests
• Overfitting to special-case behavior instead of general principle
• E.g. hard-coding message strings instead of behavior

• Slow tests
• Self-explanatory (beware of heavy environments, I/O, and sleep())

• Flaky tests
• Tests that pass or fail nondeterministically
• Often because of reliance on random inputs, timing (e.g. sleep(1000)), availability of external services

(e.g. fetching data over the network in a unit test), or dependency on order of test execution (e.g.
previous test sets up global variables in certain way)

Anti-patterns

85 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

TEST STRATEGIES

86 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Michael Hilton and Rohan Padhye

CRICOS PROVIDER #00120C

Basic Unit Test for Sort

Is this test good enough?

87 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

• What are some interesting values to test?
• List tuples <input, output, reason>

CRICOS PROVIDER #00120C

• Test cases are often designed based on behavioral equivalence classes.
• Assumption: if test passes for one value => test will pass for all values in the equivalence

class.
• Systematic tests can be drawn from specification.
• For example: A year is a leap year if:
• the year is divisible by 4;
• and the year is not divisible by 100;

• except when the year is divisible by 400

• Tests:
• assert isLeapYear(1945) == false
• assert isLeapYear(1944) == true
• assert isLeapYear(1900) == false
• assert isLeapYear(2000) == true

Black-box & Specification-Based Testing

88 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Aim: Test for cases that are at the “boundary” of equivalence classes in the
specification.
• Small change in input moves it from one class to another.
• Example: Testing a function divide(int a, int b)
• One boundary may be at `a == b`

• Edge case: One of many parameters are at the boundary
• E.g. for divide: a=0, b=42 or a=42, b = 0
• E.g. for sort: list contains duplicates, list is empty

• Corner case: Combination of parameters are at the boundary
• E.g. for divide: a=0, b=0

Boundary-Value Testing

89 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Aim: Test for cases that exercise various program elements (e.g.
functions, lines, statements, branches)

• Key idea: If you don’t execute some code, you can’t find bugs in
that code. So, let’s execute all the code.

• Which one do you think is harder: black-box boundary-value
testing or white-box structural testing?

White-box or Structural Testing

90 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

Coverage of the Basic Unit Test

91 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

But the basic unit test worked well
for Merge and otherSort….

Coverage != Completeness

92 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Key idea: Inject bugs in the program by mutating the source code.
• Ideally: at least one test should fail on the mutated program (=

catch bug).
• If this happens, the mutant is said to be “killed”.
• If all tests continue to pass under the mutated program, then the mutant is said to

“survive”.
• Mutation score = (mutants killed) / (total mutants). This is a better predictor of bug-

finding capability than coverage.

• Competent programmer assumption: programs are mostly correct,
except for very small errors.
• Shows that tests are falsifiable at the boundary of implementation (as opposed to boundary of

specification).

Mutation Testing

93 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Sample mutations include:
• Change ‘a + b’ to ‘a – b’
• Change ‘if (a > b)’ to ‘if (a >= b)’ or ‘if(b > a)’

• Change ‘i++’ to ‘i—’
• Replace integer variables with 0

• Change ‘return x’ to ‘return True’ (or some other constant)
• Delete lines containing void method calls (e.g. ‘x.setFoo(1)’)
• … and many more

• Over time, standard list of mutators curated by researchers
• Pitest is a popular mutation testing tool for Java (pitest.org)

Mutation Testing

94 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Nice idea but has several limitations:
1. Equivalent mutations: Modifications that do not affect program semantics (e.g.

affecting the pivot in Quicksort).

2. Needs a pretty complete test oracle: Otherwise, some genuine bugs may never be
caught. We’ll come back to this point later.

3. Expensive to run. N mutants require N test executions. Program testing costs scale
quadratically (because N also grows with size).

Mutation Testing

95 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Obvious in some applications (e.g. “sort()”) but more challenging
in others (e.g. “encrypt()” or UI-based tests)

• Lack of good oracles can limit the scalability of testing. Easy to
generate lots of input data, but not easy to validate if output (or
other program behavior) is correct.

• Fortunately, we have some tricks.

Test Oracles

96 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Intends to validate invariants that are always true of a computed
result.
• E.g. if testing a list-reversing function called `rev`, then we have the invariant:

`rev(rev(list)).equals(list)`

• Key idea: Can now easily scale testing to very large data sets,
either hand-written or automatically generated, without the need
for hard-coding expected outputs completely.

Property-Based Testing

97 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• If you have two implementations of the same specification, then their output should
match on all inputs.
• E.g. `timSort(x).equals(quickSort(x))` à should always be true
• Special case of a property test, with a free oracle.

• If a differential test fails, at least one of the two implementations is wrong.
• But which one?
• If you have N > 2 implementations, run them all and compare. Majority wins (the odd one out is buggy).

• Differential testing works well when testing programs that implement standard
specifications such as compilers, browsers, SQL engines, XML/JSON parsers, media
players, etc.
• Not feasible in general

Differential Testing

98 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Differential testing through time (or versions, say V1 and V2).

• Assuming V1 and V2 don’t add a new feature or fix a known bug,
then f(x) in V1 should give the same result as f(x) in V2.

• Key Idea: Assume the current version is correct. Run program on
current version and log output. Compare all future versions to that
output.

Regression Testing

99 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

https://testing.googleblog.com/search/label/TotT

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING100

Google’s TotT

https://testing.googleblog.com/search/label/TotT

CRICOS PROVIDER #00120C

• The aim of program testing is to find bugs and to show that a program does what its developers expect it to do.

• Four types of testing that are relevant to software products are functional testing, user testing, load and
performance testing and security testing.

• Unit testing involves testing program units such as functions or class methods that have a single responsibility.
Feature testing focuses on testing individual system features. System testing tests the system as a whole to check
for unwanted interactions between features and between the system and its environment.

• Identifying equivalence partitions, in which all inputs have the same characteristics, and choosing test inputs at the
boundaries of these partitions, is an effective way of finding bugs in a program.

• User stories may be used as a basis for deriving feature tests.

• Test automation is based on the idea that tests should be executable. You develop a set of executable tests and run
these each time you make a change to a system.

101 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Key Points

CRICOS PROVIDER #00120C

• The structure of an automated unit test should be arrange-action-assert. You set up the test parameters,
call the function or method being tested, and make an assertion of what should be true after the action has
been completed.

• Test-driven development is an approach to development where executable tests are written before the
code. Code is then developed to pass the tests.

• A disadvantage of test-driven development is that programmers focus on the detail of passing tests rather
than considering the broader structure of their code and algorithms used.

• Security testing may be risk driven where a list of security risks is used to identify tests that may identify
system vulnerabilities.

• Code reviews are an effective supplement to testing. They involve people checking the code to comment on
the code quality and to look for bugs.

102 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

Key Points

CRICOS PROVIDER #00120C

• Most tests that you will write will be muuuuuuch more complex than
testing a sort function.
• Need to set up environment, create objects whose methods to test,

create objects for test data, get all these into an interesting state, test
multiple APIs with varying arguments, etc.
• Many tests will require mocks (i.e., faking a resource-intensive

component).
• General principles of many of these strategies still apply:
• Writing tests can be time consuming
• Determining test adequacy can be hard (if not impossible)
• Test oracles are not easy
• Advanced test strategies have trade-offs (high costs with high returns)

Key Points

103 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Identify the scope and limitations of software testing
• Appreciate software testing as a methodology to use automation in

improving software quality
• Estimate the costs of testing and discuss trade-offs of running tests at

different times in the software development lifecycle
• Measure the quality of software tests and define test adequacy criteria
• Enumerate different levels of testing such as unit testing, integration

testing, system testing, and testing in production
• Describe the principles of test-driven development
• Outline design principles for writing good tests
• Recognize and avoid testing anti-patterns

Key Points

104 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

CRICOS PROVIDER #00120C

• Enumerate various strategies for picking test cases, such as:
• Specification-based testing
• Boundary-value testing

• Structural testing
• Property testing

• Regression testing
• Differential testing
• Property-based testing

• Mutation testing

Key Points

105 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: TESTING

