
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

MORE TESTING,
THEN STATIC ANALYSIS

Week:
10 of 12

A/Prof Alex Potanin and Dr Melina Vidoni

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

Michael Hilton and Rohan Padhye

DYNAMIC ANALYSIS AND ADVANCED AUTOMATED TESTING

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

def p1(x):
if x * x – 10 == 15:

return True
return False

Puzzle:
Find x such that p1(x) returns True

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

def p2(x):
if x > 0 and x < 1000:

if ((x - 32) * 5/9 == 100):
return True

return False

Puzzle:
Find x such that p2(x) returns True

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

def p3(x):

if x > 3 and x < 100:

z = x - 2

c = 0

while z >= 2:

if z ** (x - 1) % x == 1:

c = c + 1

z = z - 1

if c == x - 3:
return True

return False

Puzzle:
Find x such that p3(x) returns True

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

FindBugs (2006!)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

FUZZ TESTING
Security and Robustness

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Original: https://xkcd.com/1210 CC-BY-NC 2.5

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

https://xkcd.com/1210

CRICOS PROVIDER #00120C

Communications of the ACM (1990)

“

”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Fuzz Testing

Input Program
Execute

w0o19[a%#
1990 study found crashes in:
adb, as, bc, cb, col, diction, emacs, eqn, ftp,
indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, uniq,
vgrind, vi

/dev/random

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Causes: incorrect arg validation, incorrect type casting, executing
untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-
free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Common Fuzzer-Found Bugs in C/C++

How to identify these bugs in languages like C/C++?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Address Sanitizer (ASAN)
• LeakSanitizer (comes with ASAN)
• Thread Sanitizer (TSAN)
• Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

Automatic Oracles: Sanitizers

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

https://github.com/google/sanitizers

CRICOS PROVIDER #00120C

AddressSanitizer

int get_element(int* a, int i) {
return a[i];

}

int get_element(int* a, int i) {
if (a == NULL) abort();
return a[i];

}

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_heap(region)) {

low, high = get_bounds(region);
if ((a + i) < low || (a +i) > high) {

abort();
}

}
return a[i];

}

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_stack(region)) {

if (popped(region)) abort();
…

}
if (in_heap(region)) { ... }
return a[i];

}

Is it null?

Is the access out of bounds?

Is this a reference to a stack-allocated variable after return?

Compile with `clang –fsanitize=address`

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Asan is a memory error detector for C/C++. It finds:
• Use after free (dangling pointer dereference)
• Heap buffer overflow

• Stack buffer overflow
• Global buffer overflow

• Use after return
• Use after scope
• Initialization order bugs

• Memory leaks

AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

Slowdown about 2x on SPEC CPU 2006

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Exercise: Write down two strengths and two weaknesses of
fuzzing. Bonus: Write down one or more assumptions that fuzzing
depends on.

Strengths and Limitations

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Strengths:
• Cheap to generate inputs
• Easy to debug when a failure is identified

• Limitations:
• Randomly generated inputs don’t make sense most of the time.
• E.g. Imagine testing a browser and providing some ”input” HTML randomly: dgsad5135o gsd;gj

lsdkg3125j@!T%#(W+123sd asf j

• Unlikely to exercise interesting behavior in the web browser

• Can take a long time to find bugs. Not sure when to stop.

Strengths and Limitations

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Mutation-Based Fuzzing (e.g. Radamsa)

Input
Pick

Input’
Random
Mutation Program

ExecuteInitial
Input

Input
Input

Input

Seeds

<foo></foo> <woo>?</oo>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

§Binary input
§ Bit flips, byte flips
§ Change random bytes
§ Insert random byte chunks
§ Delete random byte chunks
§ Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1,

…
§ Other suggestions?

§Text input
§ Insert random symbols or keywords from a dictionary
§ Other suggestions?

Mutation Heuristics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

American Fuzzy Lop
(https://github.com/google/AFL)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Coverage-Guided Fuzzing (e.g. AFL)

Input
Pick

Input’
Random
Mutation Program

Execute

Save
?

Execution feedback

No

Yes

Add
Input’

Initial
Input

Input
Input

Input

Seeds

Coverage
Instrumentation

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
New

branch
coverage?

<foo></foo> <woo>?</oo>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Coverage-Guided Fuzzing with AFL

http://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Coverage-Guided Fuzzing with AFL

http://lcamtuf.coredump.cx/afl/

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

http://lcamtuf.coredump.cx/afl/

CRICOS PROVIDER #00120C

ClusterFuzz @ Chromium

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Where “inputs” are not just strings or binary files?
• Yes! Possible to randomly generate strongly typed values, data

structures, API calls, etc.
• Recall: Property-Based Testing

Can fuzzing be applied to unit testing?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Random List<Integer>

List list = new ArrayList();
while (randomBoolean()) { // randomly stop/go

list.append(randomInt()); // random element
}
return list;

List list = new ArrayList();
int len = randomInt(); // pick a random length
for (int i = 0 to len) {

list.append(randomInt()); // random element
}
return list;

Generators
Exercise: Write a generator for
Creating random HashMap<String, Integer>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Mutator for list: List<Integer>
int k = randomInt(0, len(list));
int action = randomChoice(ADD, DELETE, UPDATE);
switch (action) {
case UPDATE: list.set(k, randomInt()); // update element at k
case ADD: list.addAt(k, randomInt()); // add random element at k
case DELETE: list.removeAt(k); // delete k-th element

}

Mutators

Exercise: Write a mutator
HashMap<String, Integer>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

https://www.fuzzingbook.org/

The Fuzzing Book

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

https://www.fuzzingbook.org/

CRICOS PROVIDER #00120C

TESTING PERFORMANCE

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Goal: Identify performance bugs. What are these?
• Unexpected bad performance on some subset of inputs
• Performance degradation over time

• Difference in performance across versions or platforms

• Not as easy as functional testing. What’s the oracle?
• Fast = good, slow = bad // but what’s the threshold?

• How to get reliable measurements?
• How to debug where the issue lies?

Performance Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Measure execution time of critical components
• Log execution times and compare over time

Performance Regression Testing

Source: https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/speed/addressing_performance_regressions.md

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Firefox

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Finding bottlenecks in execution time and memory
• Flame graphs are a popular visualization of resource consumption

by call stack.

Profiling

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Domain-Specific Perf Testing (e.g. JMeter)

http://jmeter.apache.org

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

http://jmeter.apache.org/

CRICOS PROVIDER #00120C

• Modeling and simulation
• e.g. queuing theory

• Specify load distributions
and derive or test configurations

Performance-driven Design

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Robustness testing technique: test beyond the limits of normal
operation.
• Can apply at any level of system granularity.
• Stress tests commonly put a greater emphasis on robustness,

availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal
circumstances.

Stress testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Problem: A system may behave exactly as expected under
artificially limited execution conditions.
• E.g., Memory leaks may take longer to lead to failure (also motivates static/dynamic

analysis, but we’ll talk about that later).

• Soak testing: testing a system with a significant load over a
significant period of time (positive).
• Used to check reaction of a subject under test under a possible

simulated environment for a given duration and for a given
threshold.

Soak testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

CHAOS ENGINEERING
Slides credit Christopher Meiklejohn

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

What kind of failures can happen
here?

How likely is that error to
happen?

How do I fix it?

Monolithic Application

Container

PostgreSQL ML Model

Mayan EDMS

Microservice

Process Call

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

What kind of failures can happen here?

How likely is that error to happen?

How do I fix it?

Container

Microservice Application

Container

PostgreSQL

Mayan EDMS

Container

ML Model

Remember, these calls are
messages sent on an
unreliable network.

Microservice

Process Call

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

1.Network may be partitioned

2.Server instance may be down

3.Communication between services may be delayed

4.Server could be overloaded and responses delayed

5.Server could run out of memory or CPU

Failures in Microservice Architectures

All of these issues
can be indistinguishable

from one another!

Making the calls across the network
to multiple machines makes the

probability that the system is
operating under failure much

higher.

These are the problems of
latency and partial failure.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

How do we even begin to test these scenarios?

Is there any software that can be used to test these types of failures?

Let’s look at a few ways companies do this.

Where Do We Start?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Purposely injecting failures into critical systems in order to:

• Identify flaws and “latent defects”
• Identify subtle dependencies (which may or may not lead to a flaw/defect)

• Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

Game Days

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Our applications are built on and with “unreliable” components

Failure is inevitable (fraction of percent; at Google scale, ~multiple times)

Goals:

• Preemptively trigger the failure, observe, and fix the error
• Script testing of previous failures and ensure system remains resilient

• Build the necessary relationships between teams before disaster strikes

Game Days

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Full data center destruction (Amazon EC2 region)

• No advanced notice of which data center will be taken offline
• No notice of when the data center will be taken offline

• Only advance notice (months) that a GameDay will be happening
• Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for detecting
errors and paging employees was located in the zone of the failure!

Example: Amazon GameDay

Not all failures can be actually
performed and must be

simulated!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

1.Anticipation: know what to expect

2.Monitoring: know what to look for

3.Response: know what to do

4.Learning: know what just happened
(e.g, postmortems)

Cornerstones of Resilence

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Terminate network in Sao Paulo for testing:
• Hidden dependency takes down links in Mexico which would

have remained undiscovered without testing

Turn off data center to find that machines won’t come back:
• Ran out of DHCP leases (for IP address allocation) when a large

number of machines come back online unexpectedly.

Some Example Google Issues

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Significant deployment in Amazon Web Services in order to remain
elastic in times of high and low load (first public, 100% w/o content
delivery.)

Pushes code into production and modifies runtime configuration
hundreds of times a day

Key metric: availability

Netflix: Cloud Computing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• A Netflix infrastructure testing system.
• “Malicious” programs randomly trample on components, network,

datacenters, AWS instances…
• Chaos monkey was the first – disables production instances at random.

• Other monkeys include Latency Monkey, Doctor Monkey, Conformity Monkey, etc…
Fuzz testing at the infrastructure level.

• Force failure of components to make sure that the system architecture is resilient to
unplanned/random outages.

• Netflix has open-sourced their chaos monkey code.

Chaos monkey/Simian army

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Netflix UI: AppBoot

My List RecommendationsRatingsUser ProfilesBookmarks

AppBoot

Microservice

Remote Call

What happens if the
bookmark service is down?

Search

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Allow the system to degrade in a way it’s still usable

Fallbacks:
• Cache miss due to failure of cache;
• Go to the bookmarks service and use value at possible latency penalty

Personalized content, use a reasonable default instead:
• What happens if recommendations are unavailable?
• What happens if bookmarks are unavailable?

Graceful Degradation: Anticipating Failure

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

1.Build a hypothesis around steady state behavior

2.Vary real-world events
experimental events, crashes, etc.

3.Run experiments in production
control group vs. experimental group
draw conclusions, invalidate hypothesis

4.Automate experiments to run continuously

Principles of Chaos Engineering

Are users complaining?

Does everything seem to
be working properly?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Back to quality attributes: availability!

Steady State Behavior

SPS is the
primary
indicator

of the system’s
overall health.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Mini Break in Monday Lecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

TESTING USABILITY

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• This is hard
• Capture and Replay Strategy
• mouse actions
• system events

• Test Scripts: (click on button labeled "Start" expect value X in field
Y)
• Lots of tools and frameworks
• e.g. Selenium for browsers

• (Avoid load on GUI testing by separating model from GUI)
• Beyond functional correctness?

Automating GUI/Web Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Live System?
• Extra Testing System?
• Check output / assertions?
• Effort, Costs?
• Reproducible?
• Higher Quality Feedback to Developers

Manual Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Controlled randomized experiment with two variants, A and B,
which are the control and treatment.
• One group of users given A (current system); another random

group presented with B; outcomes compared.
• Often used in web or GUI-based applications, especially to test

advertising or GUI element placement or design decisions.

Usability: A/B testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• A company sends an advertising email to its customer database,
varying the photograph used in the ad...

Example

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Act now! Sale ends soon!

Example: group A (99% of users)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Example: group B (1%)

Act now! Sale ends soon!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Requires good metrics and statistical tools to identify significant
differences.
• E.g. clicks, purchases, video plays
• Must control for confounding factors

A/B Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

What smells?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

What smells?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Try to discover issues by analyzing source code. No need to run.
• Defects of interest may be on uncommon or difficult-to-force

execution paths for testing.
• What we really want to do is check the entire possible state

space of the program for particular properties.

Static Analysis

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Defects that result from inconsistently following simple design
rules.
• Security: Buffer overruns, improperly validated input.
• Memory safety: Null dereference, uninitialized data.
• Resource leaks: Memory, OS resources.

• API Protocols: Device drivers; real time libraries; GUI frameworks.
• Exceptions: Arithmetic/library/user-defined

• Encapsulation: Accessing internal data, calling private functions.
• Data races: Two threads access the same data without synchronization

Defects Static Analysis can Catch

Key: check compliance to simple, mechanical design rules

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

https://github.com/marketplace?category=code-quality
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

https://github.com/marketplace?category=code-quality

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

How do they work?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Abstraction.
• Elide details of a specific implementation.
• Capture semantically relevant details; ignore the rest.

• Programs as data.
• Programs are just trees/graphs!

• …and we know lots of ways to analyze trees/graphs, right?

Two fundamental concepts

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Systematic examination of an abstraction of program state space.
• Does not execute code! (like code review)

• Abstraction: A representation of a program that is simpler to
analyze.
• Results in fewer states to explore; makes difficult problems tractable.

• Check if a particular property holds over the entire state space:
• Liveness: “something good eventually happens.”
• Safety: “this bad thing can’t ever happen.”

• Compliance with mechanical design rules.

Defining Static Analysis

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Every static analysis is necessarily incomplete or unsound or undecidable (or multiple of these)

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

SIMPLE SYNTACTIC AND STRUCTURAL ANALYSES

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Type Analysis

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Tree representation of the syntactic
structure of source code.
• Parsers convert concrete syntax into abstract syntax,

and deal with resulting ambiguities.

• Records only the semantically relevant
information.
• Abstract: doesn’t represent every detail (like

parentheses); these can be inferred from the
structure.

• (How to build one? Take compilers!)

Abstraction: abstract syntax tree

+

5 +

2 3

Example: 5 + (2 + 3)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Type checking

class X {
Logger logger;
public void foo() {

…
if (logger.inDebug()) {

logger.debug(“We have ” +
conn + “connections.”);

}
}

}
class Logger {

boolean inDebug() {…}
void debug(String msg) {…}

}

class X

method
foo

…field
logger

if stmt…

method
invoc.

logger inDebug

block

method
invoc.

logger debug parameter …

Logger

boolean

expects boolean

Logger

Logger ->boolean

String -> void String

void

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Find every occurrence of this pattern:

grep "if \(logger\.inDebug" . -r

Syntactic Analysis

public foo() {
…
logger.debug(“We have ” + conn + “connections.”);

}
public foo() {

…
if (logger.inDebug()) {

logger.debug(“We have ” + conn + “connections.”);
}

}

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Check that we don’t create strings outside of a Logger.inDebug check
• Abstraction:
• Look only for calls to Logger.debug()
• Make sure they’re all surrounded by if (Logger.inDebug())

• Systematic: Checks all the code
• Known as an Abstract Syntax Tree (AST) walker
• Treats the code as a structured tree
• Ignores control flow, variable values, and the heap
• Code style checkers work the same way

Abstract syntax tree walker

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

class X {
Logger logger;
public void foo() {

…
if (logger.inDebug()) {

logger.debug(“We have ” +
conn + “connections.”);

}
}

}
class Logger {

boolean inDebug() {…}
void debug(String msg) {…}

}

class X

method
foo

…field
logger

if stmt…

method
invoc.

logger inDebug

block

method
invoc.

logger debug parameter
…

Structural Analysis

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Structural analysis for possible NPEs?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Which of these should be flagged for NPE?
Surely safe? Surely bad? Suspicious?
// Limitations of structural analysis

A
B

DC

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

CONTROL-FLOW AND DATA-FLOW ANALYSIS

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Reason about all possible executions, via paths through a control
flow graph.
• Track information relevant to a property of interest at every program point.

• Define an abstract domain that captures only the values/states
relevant to the property of interest.
• Track the abstract state, rather than all possible concrete values,

for all possible executions (paths!) through the graph.

Control/Dataflow analysis

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• A tree/graph-based representation of
the flow of control through the
program.
• Captures all possible execution paths.

• Each node is a basic block: no jumps in
or out.

• Edges represent control flow options
between nodes.

• Intra-procedural: within one function.
• cf. inter-procedural

1. a = 5 + (2 + 3)
2. if (b > 10) {
3. a = 0;
4. }
5. return a;

(entry)

a=5+(2+3)

if(b>10)

a = 0

return a;

(exit)

Control flow graphs

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

How can CFG be used to identify
this issue?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

NPE analysis revisited

A
B

DC

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Map of Var -> {Null, NotNull, Unknown}

• For example:
foo -> Null
bar -> NonNull
baz -> Unknown

• Mapping tracked at every program point (before/after each CFG node). Updated
across nodes and edges.

• // let’s say foo -> Null and bar->Null
foo = new Foo();
// at this point, we have foo -> NotNull and bar -> Null

Abstract Domain for NPE Analysis

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Data-Flow Analysis Examples

if (foo != null)

foo.a() foo.b()

Then Else

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Data-Flow Analysis Examples

if (foo != null)

foo.a() foo.b()

Then Else

{foo -> Unknown}

{foo -> NotNull} {foo -> Null}

ERROR!!!!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Data-Flow Analysis Examples

if (foo != null)

foo.b()

foo.a() foo = new Foo()

Then Else

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Data-Flow Analysis Examples

if (foo != null)

foo.b()

foo.a() foo = new Foo()

Then Else

{foo -> Unknown}

{foo -> NotNull} {foo -> Null}

{foo -> NotNull} {foo -> NotNull}
{foo -> NotNull}

{foo -> NotNull}

??

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Data-Flow Analysis Examples

Exercise: Work this out for yourself. Is foo.b() safe?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Data-Flow Analysis Examples

if (foo == null)

foo.b()

foo = new Foo()

Then Else

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Data-Flow Analysis Examples

if (foo == null)

foo.b()

foo = new Foo()

Then Else

{foo -> Unknown}

{foo -> Null} {foo -> NotNull}

{foo -> NotNull} {foo -> NotNull}
{foo -> NotNull}

{foo -> NotNull}

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• “Null” means “must be NULL at this point, regardless of path taken”
• “NotNull” is similar
• “Unknown” means “may be NULL or not null depending on the path taken”

• Unknown must be dealt with due to Rice’s theorem
• Can make analysis smarter (at the cost of more algorithmic complexity) to reduce Unknowns, but can’t

get rid of them completely

• Whether to raise a flag on UNKNOWN access depends on usability/soundness.
• False positives if warning on UNKNOWN
• False negatives if no warning on UNKNOWN

Interpreting abstract states

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Sound Analysis

All Defects

Complete
Analysis

Unsound
and
Incomplete
Analysis

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Null Analysis
• Var -> {Null, NotNull, UNKNOWN}

• Zero Analysis
• Var -> {Zero, NonZero, UNKNOWN}

• Sign Analysis
• Var -> {-, +, 0, UNKNOWN}

• Range Analysis
• Var -> {[0, 1], [1, 2], [0, 2], [2, 3], [0, 3], …, UNKNOWN}

• Constant Propagation
• Var -> {1, 2, 3, …, UNKNOWN}

• File Analysis
• File -> {Open, Close, UNKNOWN}

• Tons more!!!

Examples of Data-Flow Anlayses

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Loops
• Fixed-point algorithms guarantee termination at the cost of losing information (“Unknown”)

• Functions
• Analyze them separately or analyze whole program at once
• “Context-sensitive” analyses specialize on call sites (think: duplicate function body for every

call site via inlining)
• Recursion
• Makes context-sensitive analyses explode (cf. loops)

• Object-oriented programming
• Heap memory
• Need to abstract mapping keys not just values

• Exceptions

Data-Flow Analysis: Challenges

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Which one to use when?
• Points in favor of Static Analysis
• Don’t need to set up run environment, etc.
• Can analyze functions/modules independently and in parallel
• Don’t need to think of (or try to generate) program inputs

• Points in favor of Testing / Dynamic Analysis
• Not deterred by complex program features
• Can easily handle external libraries, platform-specific config, etc.
• Ideally no false positives
• Easier to debug when a failure is identified

Static Analysis vs. Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Describe random test-input generation strategies such as fuzz
testing
• Write generators and mutators for fuzzing different types of values
• Characterize challenges of performance testing and suggest

strategies
• Reason about failures in microservice applications
• Describe chaos engineering and how it can be applied to test

resiliency of cloud-based applications
• Describe A/B testing for usability

Key Points

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

• Give a one sentence definition of static analysis. Explain what types of bugs
static analysis targets.
• Give an example of syntactic or structural static analysis.
• Construct basic control flow graphs for small examples by hand.
• Give a high-level description of dataflow analysis and cite some example

analyses.
• Explain at a high level why static analyses cannot be sound, complete, and

terminating; assess tradeoffs in analysis design.
• Characterize and choose between tools that perform static analyses.
• Contrast static analysis tools with software testing and dynamic analysis tools as

a means of catching bugs.

Key Points

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

