
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

ARCHITECTURE

Week:
11 of 12

A/Prof Alex Potanin and Dr Melina Vidoni

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

ARCHITECTURE

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

•To create a reliable, secure and efficient product, you need to pay
attention to architectural design which includes:
• its overall organization,
•how the software is decomposed into components,
•the server organization
•the technologies that you use to build the software. The architecture of a software product
affects its performance, usability, security, reliability and maintainability.

• There are many different interpretations of the term ‘software
architecture’.
• Some focus on ‘architecture’ as a noun - the structure of a system, and others consider

‘architecture’ to be a verb - the process of defining these structures.

Software architecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Architecture is the fundamental organization of a software system
embodied in its components, their relationships to each other and
to the environment, and the principles guiding its design and
evolution.

The IEEE definition of
software architecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• https://en.wikipedia.org/wiki/Mary_Shaw_(computer_scientist)

Mary Shaw

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

https://en.wikipedia.org/wiki/Mary_Shaw_(computer_scientist)

CRICOS PROVIDER #00120C

• A component is an element that implements a coherent set of
functionality or features.
• Software component can be considered as a collection of one or

more services that may be used by other components.
• When designing software architecture, you don’t have to decide

how an architectural element or component is to be implemented.
• Rather, you design the component interface and leave the

implementation of that interface to a later stage of the
development process.

Software architecture and components

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Access to services provided by software
components

S2 S3S1 S5 S6S4

Component 1

Services accessed through
the component API

Figure 4.1 Access to services provided by software components

Component 2

Services accessed directly
by other components API

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Architecture is important because the architecture of a system has
a fundamental influence on the non-functional system properties
(see the next slide).
• Architectural design involves understanding the issues that affect

the architecture of your product and creating an architectural
description that shows the critical components and their
relationships.
• Minimizing complexity should be an important goal for

architectural designers.
• The more complex a system, the more difficult and expensive it is to understand and

change.
• Programmers are more likely to make mistakes and introduce bugs and security

vulnerabilities when they are modifying or extending a complex system.

Why is architecture important?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Responsiveness
Does the system return results to users in a reasonable time?

• Reliability
Do the system features behave as expected by both developers and users?

• Availability
Can the system deliver its services when requested by users?

• Security
Does the system protect itself and users’ data from unauthorized attacks and intrusions?

• Usability
Can system users access the features that they need and use them quickly and without errors?

• Maintainability
Can the system be readily updated and new features added without undue costs?

• Resilience
Can the system continue to deliver user services in the event of partial failure or external attack?

Non-functional system quality attributes

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• A centralized security architecture
In the Star Wars prequel Rogue One (https://en.wikipedia.org/wiki/Rogue_One), the
evil Empire have stored the plans for all of their equipment in a single, highly secure,
well-guarded, remote location. This is called a centralized security architecture. It is
based on the principle that if you maintain all of your information in one place, then
you can apply lots of resources to protect that information and ensure that intruders
can’t get hold of it.
• Unfortunately (for the Empire), the rebels managed to breach their security. They

stole the plans for the Death Star, an event which underpins the whole Star Wars
saga. In trying to stop them, the Empire destroyed their entire archive of system
documentation with who knows what resultant costs. Had the Empire chosen a
distributed security architecture, with different parts of the Death Star plans stored
in different locations, then stealing the plans would have been more difficult. The
rebels would have had to breach security in all locations to steal the complete Death
Star blueprints.

The influence on architecture of system
security

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• The benefits of a centralized security architecture are that it is
easier to design and build protection and that the protected
information can be accessed more efficiently.
• However, if your security is breached, you lose everything.
• If you distribute information, it takes longer to access all of the

information and costs more to protect it.
• If security is breached in one location, you only lose the

information that you have stored there.

Centralized security architectures

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Next slide shows a system with two components (C1 and C2) that share a
common database.
• Assume C1 runs slowly because it has to reorganize the information in the database before using

it.
• The only way to make C1 faster might be to change the database. This means that C2 also has to be

changed, which may, potentially, affect its response time.

• The slide after the next shows a different architecture is used where each
component has its own copy of the parts of the database that it needs.
• If one component needs to change the database organization, this does not affect the other

component.

• However, a multi-database architecture may run more slowly and may cost
more to implement and change.
• A multi-database architecture needs a mechanism (component C3) to ensure that the data shared

by C1 and C2 is kept consistent when it is changed.

Maintainability and performance

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Shared database architecture

User interface

C1 C2

Shared database

Figure 4.2. Shared database architecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Multiple database architecture
User interface

C1

Figure 4.3. Multiple database architecture

C1 database C2 database

C3

Database reconciliation

C2

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Issues that influence
architectural decisions

Nonfunctional
product characteristics

Product
lifetime

Software
reuse

Number of
users

Software
compatibility Architectural

influences

Figure 4.4 Issues that influence architectural decisions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Nonfunctional product characteristics
Nonfunctional product characteristics such as security and performance affect all users. If you get these wrong,
your product will is unlikely to be a commercial success. Unfortunately, some characteristics are opposing, so you
can only optimize the most important.

• Product lifetime
If you anticipate a long product lifetime, you will need to create regular product revisions. You therefore need an
architecture that is evolvable, so that it can be adapted to accommodate new features and technology.

• Software reuse
You can save a lot of time and effort, if you can reuse large components from other products or open-source
software. However, this constrains your architectural choices because you must fit your design around the software
that is being reused.

• Number of users
If you are developing consumer software delivered over the Internet, the number of users can change very quickly.
This can lead to serious performance degradation unless you design your architecture so that your system can be
quickly scaled up and down.

• Software compatibility
For some products, it is important to maintain compatibility with other software so that users can adopt your
product and use data prepared using a different system. This may limit architectural choices, such as the database
software that you can use.

The importance of
architectural design issues

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• System maintainability is an attribute that reflects how
difficult and expensive it is to make changes to a system after
it has been released to customers.
• You improve maintainability by building a system from small self-contained

parts, each of which can be replaced or enhanced if changes are required.

• In architectural terms, this means that the system should be
decomposed into fine-grain components, each of which does
one thing and one thing only.
• However, it takes time for components to communicate with each other.

Consequently, if many components are involved in implementing a product
feature, the software will be slower.

Trade off: Maintainability vs performance

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• You can achieve security by designing the system protection as a
series of layers (next slide).
• An attacker has to penetrate all of those layers before the system is compromised.

• Layers might include system authentication layers, a separate
critical feature authentication layer, an encryption layer and so on.
• Architecturally, you can implement each of these layers as

separate components so that if one of these components is
compromised by an attacker, then the other layers remain intact.

Trade off: Security vs usability

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Authentication layers

Protected asset such as a
database of users’ credit cards

Encryption

Feature authentication

Application authentication

IP authentication

Figure 4.5 Authentication layers

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• A layered approach to security affects the usability of the
software.
• Users have to remember information, like passwords, that is needed to penetrate a

security layer. Their interaction with the system is inevitably slowed down by its
security features.

• Many users find this irritating and often look for work-arounds so that they do not have
to re-authenticate to access system features or data.

• To avoid this, you need an architecture:
• that doesn’t have too many security layers,
• that doesn’t enforce unnecessary security,

• that provides helper components that reduce the load on users.

Usability issues

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Availability is particularly important in enterprise products, such as
products for the finance industry, where 24/7 operation is expected.
• The availability of a system is a measure of the amount of ‘uptime’ of that

system.
• Availability is normally expressed as a percentage of the time that a system is available to deliver

user services.

• Architecturally, you achieve availability by having redundant components
in a system.
• To make use of redundancy, you include sensor components that detect failure, and switching

components that switch operation to a redundant component when a failure is detected.

• Implementing extra components takes time and increases the cost of
system development. It adds complexity to the system and therefore
increases the chances of introducing bugs and vulnerabilities.

Trade off: Availability vs time-to-market

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• How should the system be organized as a set of architectural
components, where each of these components provides a subset
of the overall system functionality?
• The organization should deliver the system security, reliability and performance that

you need.

• How should these architectural components be distributed and
communicate with each other?
• What technologies should you use in building the system and what

components should be reused?

Architectural design questions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Abstraction in software design means that you focus on the
essential elements of a system or software component without
concern for its details.
• At the architectural level, your concern should be on large-scale

architectural components.
• Decomposition involves analysing these large-scale components

and representing them as a set of finer-grain components.
• Layered models are often used to illustrate how a system is

composed of components.

Component organization

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

An architectural model of a document
retrieval system

User interaction

Web browser

Authentication and
authorization

Form and query
manager

Web page
generation

User interface management

Search Document
retrieval

Rights
management Accounting

Index
management Index querying Index

creation

Local input
validation

Local printing

Information retrieval

Document index

DB1 DB2 DB3 DB4 DB5

Databases

Figure 4.6 An architectural model of a document retrieval system

Basic services

Database
query

User account
management

Query
validation

Logging

Payments

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Complexity in a system architecture arises because of the number
and the nature of the relationships between components in that
system.
• When decomposing a system into components, you should try to

avoid unnecessary software complexity.
• Localize relationships

If there are relationships between components A and B, these are easier to understand
if A and B are defined in the same module.

• Reduce shared dependencies
Where components A and B depend on some other component or data, complexity
increases because changes to the shared component mean you have to understand
how these changes affect both A and B.

• It is always preferable to use local data wherever possible and to
avoid sharing data if you can.

Architectural complexity

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Examples of component relationships

C2
C1

C1 is-part-of C2

C1

C2

calls

C1 uses C2

C1 C2

C1 C2C1

C1 is-located-with C2

data

C1 shares-data-with C2

Figure 4.7 Examples of component relationships

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Architectural design guidelines

Design
guidelines

Separation of concerns
Organize your architecture

into components that focus on
a single concern

Implement once
Avoid duplicating

functionality at different
places in your architecture

Stable interfaces
Design component

interfaces that are coherent
 and that change slowly

Figure 4.8 Architectural design guidelines

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Each layer is an area of concern and is considered separately from
other layers.
• The top layer is concerned with user interaction, the next layer down with user interface

management, the third layer with information retrieval and so on.
• Within each layer, the components are independent and do not

overlap in functionality.
• The lower layers include components that provide general functionality so there is no

need to replicate this in the components in a higher level.
• The architectural model is a high-level model that does not include

implementation information.
• Ideally, components at level X (say) should only interact with the APIs of the

components in level X-1. That is, interactions should be between layers and not across
layers.

Design guidelines and
layered architectures

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Cross-cutting concerns are concerns that are systemic, that is, they
affect the whole system.
• In a layered architecture, cross-cutting concerns affect all layers in the

system as well as the way in which people use the system.
• Cross-cutting concerns are completely different from the functional

concerns represented by layers in a software architecture.
• Every layer has to take them into account and there are inevitably

interactions between the layers because of these concerns.
• The existence of cross-cutting concerns is the reason why modifying a

system after it has been designed to improve its security is often
difficult.

Cross-cutting concerns

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Cross-cutting concerns
Figure 4.9 Cross-cutting concerns

Security Performance Reliability

Hardware

 User interface

Operating system

Infrastructure

Application

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Security architecture
Different technologies are used in different layers, such as an SQL database or a
Firefox browser. Attackers can try to use of vulnerabilities in these technologies
to gain access.
• Consequently, you need protection from attacks at each layer as well as

protection, at lower layers in the system, from successful attacks that have
occurred at higher-level layers.
• If there is only a single security component in a system, this represents a critical

system vulnerability. If all security checking goes through that component and it
stops working properly or is compromised in an attack, then you have no
reliable security in your system.
• By distributing security across the layers, your system is more resilient to attacks

and software failure (remember the Rogue One example earlier).

Security as a cross-cutting concern

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

A generic layered architecture for a web-
based application

Authentication and user interaction management

Browser-based or mobile user interface

Application-specific functionality

Transaction and database management

Figure 4.10 A generic layered architecture for a web-based application

Basic shared services

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Browser-based or mobile user interface
A web browser system interface in which HTML forms are often used to collect user input. Javascript
components for local actions, such as input validation, should also be included at this level. Alternatively, a
mobile interface may be implemented as an app.

• Authentication and UI management
A user interface management layer that may include components for user authentication and web page
generation.

• Application-specific functionality
An ‘application’ layer that provides functionality of the application. Sometimes, this may be expanded into
more than one layer.

• Basic shared services
A shared services layer, which includes components that provide services used by the application layer
components.

• Database and transaction management
A database layer that provides services such as transaction management and recovery. If your application
does not use a database then this may not be required.

Layer functionality in a web-based
application

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Replaceability
It should be possible for users to replace applications in the system with alternatives and to
add new applications. Consequently, the list of applications included should not be hard-wired
into the system.

• Extensibility
It should be possible for users or system administrators to create their own versions of the
system, which may extend or limit the ’standard’ system.

• Age-appropriate
Alternative user interfaces should be supported so that age-appropriate interfaces for
students at different levels can be created.

• Programmability
It should be easy for users to create their own applications by linking existing applications in
the system.

• Minimum work
Users who do not wish to change the system should not have to do extra work so that other
users can make changes.

iLearn architectural design principles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Our goal in designing the iLearn system was to create an
adaptable, universal system that could be easily updated as new
learning tools became available.
• This means that it must be possible to change and replace components and services in

the system (principles (1) and (2)).
• Because the potential system users spanned an age range from 3 to 18, we needed to

provide age-appropriate user interfaces and to make it easy to choose an interface
(principle (3)).
• Principle (4) also contributes to system adaptability and principle (5) was included to

ensure that this adaptability did not adversely affect users who did not require it.

iLearn design principles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

•These principles led us to an architectural design decision that the iLearn system should
be service-oriented.

•Every component in the system is a service. Any service is potentially replaceable and
new services can be created by combining existing services. Different services delivering
comparable functionality can be provided for students of different ages.

•Service integration

• Full integration Services are aware of and can communicate with other services through their APIs.

• Partial integration Services may share service components and databases but are not aware of and
cannot communicate directly with other application services.

• Independent These services do not use any shared system services or databases and they are unaware
of any other services in the system. They can be replaced by any other comparable service.

Designing iLearn as
a service-oriented system

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

A layered architectural model of the iLearn
system

Authentication
User storage

Logging and monitoring
Application storage

Application interfacing
Search

Shared infrastructure services

Integrated services

Application services

Configuration services

User interface management

User analyticsResource discovery

Group
configuration

Application
configuration

Security
configuration

User interface

Web browser iLearn app

Interface creation Forms management Interface delivery

Archive access

Blog Wiki Spreadsheet Presentation Drawing

User installed
applications

Virtual learning
environment

Email and
messaging

Video conf.Word processor

User interface
configuration

Setup
service

Figure 4.11 A layered architectural model of the iLearn system

Authentication and
authorization

Login

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• The distribution architecture of a software system defines the
servers in the system and the allocation of components to these
servers.
• Client-server architectures are a type of distribution architecture

that is suited to applications where clients access a shared
database and business logic operations on that data.
• In this architecture, the user interface is implemented on the

user’s own computer or mobile device.
• Functionality is distributed between the client and one or more server computers.

Distribution architecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Client-server architecture

Client 1

Client 2

Client 3

Client ...

Servers

request

response

request

request

request

response

response

response

Figure 4.12 Client-server architecture

Load
balancer

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

The model-view-controller pattern

Browser

Controller View

Model

Page to displayUser inputs

SERVER

CLIENT

View refresh
request

Change
notification

View update
request

User changes

Figure 4.13 The model-view-controller pattern

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Client-server communication normally uses the HTTP protocol.
• The client sends a message to the server that includes an instruction such as GET or

POST along with the identifier of a resource (usually a URL) on which that instruction
should operate. The message may also include additional information, such as
information collected from a form.

• HTTP is a text-only protocol so structured data has to be
represented as text. There are two ways of representing this data
that are widely used, namely XML and JSON.
• XML is a markup language with tags used to identify each data item.

• JSON is a simpler representation based on the representation of objects in the
Javascript language.

Client-server communication

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Multi-tier client-server architecture

Web server

Figure 4.14 Multi-tier client-server architecture

Application
server

Database
server

Client 1

Client 2

Client 3

Client ...

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Services in a service-oriented architecture are stateless
components, which means that they can be replicated and can
migrate from one computer to another.
• Many servers may be involved in providing services
• A service-oriented architecture is usually easier to scale as demand

increases and is resilient to failure.

Service-oriented architecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Service-oriented architecture
Figure 4.15 Service-oriented architecture

Service
gateway

s1

s2

s3

s4

s5

s6

Web server

Client 1

Client 2

Client 3

Client ...

Services

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Data type and data updates
• If you are mostly using structured data that may be updated by different system features, it

is usually best to have a single shared database that provides locking and transaction
management. If data is distributed across services, you need a way to keep it consistent and
this adds overhead to your system.

• Change frequency
• If you anticipate that system components will be regularly changed or replaced, then

isolating these components as separate services simplifies those changes.
• The system execution platform
• If you plan to run your system on the cloud with users accessing it over the Internet, it is

usually best to implement it as a service-oriented architecture because scaling the system is
simpler.

• If your product is a business system that runs on local servers, a multi-tier architecture may
be more appropriate.

Issues in architectural choice

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Database
Should you use a relational SQL database or an unstructured NOSQL database?
• Platform

Should you deliver your product on a mobile app and/or a web platform?
• Server

Should you use dedicated in-house servers or design your system to run on a
public cloud? If a public cloud, should you use Amazon, Google, Microsoft, or
some other option?
• Open source

Are there suitable open-source components that you could incorporate into
your products?
• Development tools

Do your development tools embed architectural assumptions about the
software being developed that limit your architectural choices?

Technology choices

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• There are two kinds of database that are now commonly used:
• Relational databases, where the data is organised into structured tables
• NoSQL databases, in which the data has a more flexible, user-defined organization.

• Relational databases, such as MySQL, are particularly suitable for
situations where you need transaction management and the data
structures are predictable and fairly simple.
• NoSQL databases, such as MongoDB, are more flexible and

potentially more efficient than relational databases for data
analysis.
• NoSQL databases allow data to be organized hierarchically rather than as flat tables

and this allows for more efficient concurrent processing of ‘big data’.

Database

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

•Delivery can be as a web-based or a mobile product or both

•Mobile issues:

• Intermittent connectivity You must be able to provide a limited service without network connectivity.

• Processor power Mobile devices have less powerful processors, so you need to minimize computationally-intensive
operations.

• Power management Mobile battery life is limited so you should try to minimize the power used by your application.

• On-screen keyboard On-screen keyboards are slow and error-prone. You should minimize input using the screen
keyboard to reduce user frustration.

• To deal with these differences, you usually need separate browser-based and mobile versions of your
product front-end.

• You may need a completely different decomposition architecture in these different versions to ensure that
performance and other characteristics are maintained.

Delivery platform

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• A key decision that you have to make is whether to design your
system to run on customer servers or to run on the cloud.
• For consumer products that are not simply mobile apps I think it

almost always makes sense to develop for the cloud.
• For business products, it is a more difficult decision.
• Some businesses are concerned about cloud security and prefer to run their systems

on in-house servers. They may have a predictable pattern of system usage so there is
less need to design your system to cope with large changes in demand.

• An important choice you have to make if you are running your
software on the cloud is which cloud provider to use.

Server

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Open source software is software that is available freely, which you can
change and modify as you wish.
• The advantage is that you can reuse rather than implement new software, which reduces

development costs and time to market.
• The disadvantages of using open-source software is that you are constrained by that software and

have no control over its evolution.

• The decision on the use of open-source software also depends on the
availability, maturity and continuing support of open source components.
• Open source license issues may impose constraints on how you use the

software.
• Your choice of open source software should depend on the type of product

that you are developing, your target market and the expertise of your
development team.

Open source

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Development technologies, such as a mobile development
toolkit or a web application framework, influence the
architecture of your software.
• These technologies have built-in assumptions about system architectures and you

have to conform to these assumptions to use the development system.

• The development technology that you use may also have an
indirect influence on the system architecture.
• Developers usually favour architectural choices that use familiar technologies that

they understand. For example, if your team have a lot of experience of relational
databases, they may argue for this instead of a NoSQL database.

Development tools

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Software architecture is the fundamental organization of a system embodied
in its components, their relationships to each other, and to the environment,
and the principles guiding its design and evolution.
• The architecture of a software system has a significant influence on non-

functional system properties such as reliability, efficiency and security.
• Architectural design involves understanding the issues that are critical for your

product and creating system descriptions that shows components and their
relationships.
• The principal role of architectural descriptions is to provide a basis for the

development team to discuss the system organization. Informal architectural
diagrams are effective in architectural description because they are fast and
easy to draw and share.
• System decomposition involves analyzing architectural components and

representing them as a set of finer-grain components.

Key Points

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• To minimize complexity, you should separate concerns, avoid functional
duplication and focus on component interfaces.
• Web-based systems often have a common layered structure including user

interface layers, application-specific layers and a database layer.
• The distribution architecture in a system defines the organization of the

servers in that system and the allocation of components to these servers.
• Multi-tier client-server and service-oriented architectures are the most

commonly used architectures for web-based systems.
• Making decisions on technologies such as database and cloud technologies

are an important part of the architectural design process.

Key Points

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Mini Break in Monday Lecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

SECURITY

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

•Software security should always be a high priority for product
developers and their users.
•If you don’t prioritize security, you and your customers will
inevitably suffer losses from malicious attacks.
•In the worst case, these attacks could can put product providers
out of business.
• If their product is unavailable or if customer data is compromised, customers are liable
to cancel their subscriptions.

•Even if they can recover from the attacks, this will take time and
effort that would have been better spent working on their
software.

Software security

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Types of security threat

PROGRAM

DATA

Availability
threats

Integrity
threats

Confidentiality
threats

An attacker attempts
to damage the system

or its data.

An attacker attempts
to deny access to the system

for legitimate users

An attacker tries to gain
access to private information

held by the system

Example: Data theft

Example: Distributed denial
of service attack

Example: Virus

Example: Ransomware

Figure 7.1 Types of security threat

SOFTWARE PRODUCT

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

System infrastructure stack

Software infrastructure

Application

Operational environment

Frameworks and application libraries

Figure 7.2 System infrastructure stack

Network

Operating system

Database

System libraries

Browsers and messaging

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Authentication and authorization
You should have authentication and authorization standards and procedures that ensure that
all users have strong authentication and that they have properly access permissions properly.
This minimizes the risk of unauthorized users accessing system resources.

• System infrastructure management
Infrastructure software should be properly configured and security updates that patch
vulnerabilities should be applied as soon as they become available.

• Attack monitoring
The system should be regularly checked for possible unauthorized access. If attacks are
detected, it may be possible to put resistance strategies in place that minimize the effects of
the attack.

• Backup
Backup policies should be implemented to ensure that you keep undamaged copies of
program and data files. These can then be restored after an attack.

Security management

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Operational security focuses on helping users to maintain security. User
attacks try to trick users into disclosing their credentials or accessing a
website that includes malware such as a key-logging system.
• Operational security procedures and practices
• Auto-logout, which addresses the common problem of users forgetting to logout from a

computer used in a shared space.
• User command logging, which makes it possible to discover actions taken by users that have

deliberately or accidentally damaged some system resources.

• Multi-factor authentication, which reduces the chances of an intruder gaining access to the
system using stolen credentials.

Operational security

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Injection attacks are a type of attack where a malicious user uses a
valid input field to input malicious code or database commands.
• These malicious instructions are then executed, causing some

damage to the system. Code can be injected that leaks system data
to the attackers.
• Common types of injection attack include buffer overflow attacks

and SQL poisoning attacks.

Injection attacks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• SQL poisoning attacks are attacks on software products that use an
SQL database.
• They take advantage of a situation where a user input is used as

part of an SQL command.
• A malicious user uses a form input field to input a fragment of SQL

that allows access to the database.
• The form field is added to the SQL query, which is executed and

returns the information to the attacker.

SQL poisoning attacks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Cross-site scripting attacks are another form of injection attack.
• An attacker adds malicious Javascript code to the web page that is

returned from a server to a client and this script is executed when the
page is displayed in the user’s browser.
• The malicious script may steal customer information or direct them to

another website.
• This may try to capture personal data or display advertisements.
• Cookies may be stolen, which makes a session hijacking attack possible.

• As with other types of injection attack, cross-site scripting attacks may
be avoided by input validation.

Cross-site scripting attacks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Cross-site scripting attack

Attacker

Browser

Website

1.
Introduce

malicious code

Victim

Product website

3.
Malware script

sends session cookie
to attacker

Malicious code
added to valid data

Valid request for data
from website

2.
Data delivered and malware

script installed in victim’s browser

Figure 7.3 Cross-site scripting attack

Browser

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

•When a user authenticates themselves with a web application, a session is created.

• A session is a time period during which the user’s authentication is valid. They don’t have to re-authenticate
for each interaction with the system.

• The authentication process involves placing a session cookie on the user’s device

• Session hijacking is a type of attack where an attacker gets hold of a session cookie and uses
this to impersonate a legitimate user.

• There are several ways that an attacker can find out the session cookie value including cross-
site scripting attacks and traffic monitoring.

• In a cross-site scripting attack, the installed malware sends session cookies to the attackers.

• Traffic monitoring involves attackers capturing the traffic between the client and server. The session cookie can
then be identified by analysing the data exchanged.

Session hijacking attacks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Traffic encryption
Always encrypt the network traffic between clients and your server. This means setting up
sessions using https rather than http. If traffic is encrypted it is harder to monitor to find
session cookies.

• Multi-factor authentication
Always use multi-factor authentication and require confirmation of new actions that may be
damaging. For example, before a new payee request is accepted, you could ask the user to
confirm their identity by inputting a code sent to their phone. You could also ask for password
characters to be input before every potentially damaging action, such as transferring funds.

• Short timeouts
Use relatively short timeouts on sessions. If there has been no activity in a session for a few
minutes, the session should be ended and future requests directed to an authentication page.
This reduces the likelihood that an attacker can access an account if a legitimate user forgets
to log off when they have finished their transactions.

Actions to reduce the
likelihood of hacking

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Denial of service attacks are attacks on a software system that are intended to make that system unavailable for
normal use.

• Distributed denial of service attacks (DDOS) are the most common type of denial of service attacks.

• These involve distributed computers, that have usually been hijacked as part of a botnet, sending hundreds of thousands of requests
for service to a web application. There are so many service requests that legitimate users are denied access.

• Other types of denial of service attacks target application users.

• User lockout attacks take advantage of a common authentication policy that locks out a user after a number of failed authentication
attempts. Their aim is to lock users out rather than gain access and so deny the service to these users.

• Users often use their email address as their login name so if an attacker has access to a database of email addresses, he or she can
try to login using these addresses.

• If you don’t lock accounts after failed validation, then attackers can use brute-force attacks on your system. If you
do, you may deny access to legitimate users.

Denial of service attacks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Brute force attacks are attacks on a web application where the
attacker has some information, such as a valid login name, but does
not have the password for the site.
• The attacker creates different passwords and tries to login with each

of these. If the login fails, they then try again with a different
password.
• Attackers may use a string generator that generates every possible combination of

letters and numbers and use these as passwords.
• To speed up the process of password discovery, attackers take advantage of the fact that

many users choose easy-to-remember passwords. They start by trying passwords from
the published lists of the most common passwords.

• Brute force attacks rely on users setting weak passwords, so you can
circumvent them by insisting that users set long passwords that are
not in a dictionary or are common words.

Brute force attacks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Authentication is the process of ensuring that a user of your
system is who they claim to be.
• You need authentication in all software products that maintain

user information, so that only the providers of that information
can access and change it.
• You also use authentication to learn about your users so that you

can personalize their experience of using your product.

Authentication

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Authentication approaches

Mobile
device

Authentication approach Example

Figure 7.4 Authentication approaches

Authenticating user Fingerprint

Password

Attribute

Possession

Knowledge

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Knowledge-based authentication
• The user provides secret, personal information when they register with the system. Each

time they log on, the system asks them for this information.

• Possession-based authentication
• This relies on the user having a physical device (such as a mobile phone) that can generate

or display information that is known to the authenticating system. The user inputs this
information to confirm that they possess the authenticating device.

• Attribute-based authentication is based on a unique biometric attribute
of the user, such as a fingerprint, which is registered with the system.
• Multi-factor authentication combines these approaches and requires

users to use more than one authentication method.

Authentication methods

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Insecure passwords
Users choose passwords that are easy to remember. However, it is also easy for
attackers to guess or generate these passwords, using either a dictionary or a brute
force attack.
• Phishing attacks

Users click on an email link that points to a fake site that tries to collect their login
and password details.
• Password reuse

Users use the same password for several sites. If there is a security breach at one of
these sites, attackers then have passwords that they can try on other sites.
• Forgotten passwords

Users regularly forget their passwords so that you need to set up a password
recovery mechanism to allow these to be reset. This can be a vulnerability if users’
credentials have been stolen and attackers use it to reset their passwords.

Weaknesses of password-password-based
authentication

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Federated identity is an approach to authentication where you use
an external authentication service.
• ‘Login with Google’ and ‘Login with Facebook’ are widely used

examples of authentication using federated identity.
• The advantage of federated identity for a user is that they have a

single set of credentials that are stored by a trusted identity service.
• Instead of logging into a service directly, a user provides their

credentials to a known service who confirms their identity to the
authenticating service.
• They don’t have to keep track of different user ids and passwords.

Because their credentials are stored in fewer places, the chances of
a security breach where these are revealed is reduced.

Federated identity

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Federated identity

Service
Request

authentication
Divert request

Request credentials

Provide credentials

Return authentication
token

Authentication
response

Figure 7.5 Federated identity

User Trusted authenticator

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Authentication involves a user proving their identity to a software
system.
• Authorization is a complementary process in which that identity is used

to control access to software system resources.
• For example, if you use a shared folder on Dropbox, the folder’s owner may authorize you to

read the contents of that folder, but not to add new files or overwrite files in the folder.

• When a business wants to define the type of access that users get to
resources, this is based on an access control policy.
• This policy is a set of rules that define what information (data and

programs) is controlled, who has access to that information and the type
of access that is allowed

Authorization

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Explicit access control policies are important for both legal and
technical reasons.
• Data protection rules limit the access the personal data and this must be reflected in

the defined access control policy. If this policy is incomplete or does not conform to the
data protection rules, then there may be subsequent legal action in the event of a data
breach.

• Technically, an access control policy can be a starting point for setting up the access
control scheme for a system.

• For example, if the access control policy defines the access rights of students, then
when new students are registered, they all get these rights by default.

Access control policies

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Access control lists (ACLs) are used in most file and database
systems to implement access control policies.
• Access control lists are tables that link users with resources and

specify what those users are permitted to do.
• For example, for this book I would like to be able to set up an access control list to a

book file that allows reviewers to read that file and annotate it with comments.
However, they are not allowed to edit the text or to delete the file.

• If access control lists are based on individual permissions, then
these can become very large. However, you can dramatically cut
their size by allocating users to groups and then assigning
permissions to the group

Access control lists

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Access control lists

D

A

B

C

D

Resource Access

...

Figure 7.8 Access control lists

User Permissions

All

Staff

Sysadmin

Read

Create, Edit

Delete

User Permissions

All

Sysadmin

Execute

Create, Delete

User

Admin

Teaching staff

Student

Create, Read, Edit

Permissions

Read, Edit

Read

if department = dept_id

if student = student_id

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Encryption is the process of making a document unreadable by
applying an algorithmic transformation to it.
• A secret key is used by the encryption algorithm as the basis of this

transformation. You can decode the encrypted text by applying the
reverse transformation.
• Modern encryption techniques are such that you can encrypt data so

that it is practically uncrackable using currently available technology.
• However, history has demonstrated that apparently strong encryption

may be crackable when new technology becomes available.
• If commercial quantum systems become available, we will have to use

a completely different approach to encryption on the Internet.

Encryption

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Encryption and decryption

Secret
key

Decrypt

Figure 7.9 Encryption and decryption

Plain
text

Encrypted
textEncryptPlain

text

Secret
key

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• In a symmetric encryption scheme, the same encryption key is used
for encoding and decoding the information that is to be kept secret.
• If Alice and Bob wish to exchange a secret message, both must have

a copy of the encryption key. Alice encrypts the message with this
key. When Bob receives the message, he decodes it using the same
key to read its contents.
• The fundamental problem with a symmetric encryption scheme is

securely sharing the encryption key.
• If Alice simply sends the key to Bob, an attacker may intercept the

message and gain access to the key. The attacker can then decode
all future secret communications.

Symmetric encryption

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Symmetric encryption

Encryption key

Secret message

Encryption key

Figure 7.10 Symmetric encryption

Alice Bob

Encrypted text Secret message

a7Dr6yYt9F...a7Dr6yYt9F...

encrypt decrypt

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Asymmetric encryption, does not require secret keys to be shared.
• An asymmetric encryption scheme uses different keys for encrypting

and decrypting messages.
• Each user has a public and a private key. Messages may be encrypted

using either key but can only be decrypted using the other key.
• Public keys may be published and shared by the key owner. Anyone

can access and use a published public key.
• However, messages can only be decrypted by the user’s private key so

is only readable by the intended recipient

Asymmetric encryption

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Asymmetric encryption

Bob’s public key

Secret message

Bob’s private key

Figure 7.11 Asymmetric encryption

Alice Bob

Encrypted text Secret message

dr5ts3TR9dt
x4ztmRsYY...

hTr34BbfsDy
9r3g5HHt76...

encrypt decrypt

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Asymmetric encryption can also be used to authenticate the
sender of a message by encrypting it with a private key and
decrypting it with the corresponding public key.
• Say Alice wants to send a message to Bob and she has a copy of his

public key.
• However, she is not sure whether or not the public key that she has

for Bob is correct and she is concerned that the message may be
sent to the wrong person.
• Private/public key encryption can be used to verify Bob’s identity.
• Bob uses his private key to encrypt a message and sends this to Alice. If it can be

decrypted using Bob’s public key, then Alice has the correct key.

Encryption and authentication

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Encryption for authentication

Bob’s private key

I am really
Bob

Bob’s public key

Figure 7.12 Encryption for authentication

AliceBob

Encrypted text

dr5ts3TR9dt
x4ztmRsYY...

hTr34BbfsDy
9r3g5HHt76...

I am really
Bob

encrypt decrypt

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• The https protocol is a standard protocol for securely exchanging texts on the web. It is the standard
http protocol plus an encryption layer called TLS (Transport Layer Security). This encryption layer is
used for 2 things:

• to verify the identity of the web server;

• to encrypt communications so that they cannot be read by an attacker who intercepts the messages between
the client and the server

• TLS encryption depends on a digital certificate that is sent from the web server to the client.

• Digital certificates are issued by a certificate authority (CA), which is a trusted identity verification service.

• The CA encrypts the information in the certificate using their private key to create a unique signature. This
signature is included in the certificate along with the public key of the CA. To check that the certificate is valid,
you can decrypt the signature using the CA’s public key.

TLS and digital certificates

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Subject information
Information about the company or individual whose web site is being visited. Applicants apply for a digital
certificate from a certificate authority who checks that the applicant is a valid organization.

• Certificate authority information
Information about the certificate authority (CA) who has issued the certificate.

• Certificate information
Information about the certificate itself, including a unique serial number and a validity period, defined by
start and end dates.

• Digital signature
The combination of all of the above data uniquely identifies the digital certificate. The signature data is
encrypted with the CA’s private key to confirm that the data is correct. The algorithm used to generate the
digital signature is also specified.

• Public key information
The public key of the CA is included along with the key size and the encryption algorithm used. The public
key may be used to decrypt the digital signature.

Digital certificates

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Using symmetric
and asymmetric
encryption in TLS

CLIENT SERVER
Encryption methods

supported

Encryption method to be used

Prove your identity?

Hello

Generate
RS

Encrypt
RS

Compute
key

Get
certificate

RC is a large
random number

Check
Check certificate issuer
and validity and digital
signature on certificate

Generate
RC

RS is a large
random number

Digital certificate + encrypted RS

Encrypt
RC

Decrypt RS and encrypt
 RC using public key

from digital certificate Encrypted RC Decrypt
RC

Decrypt RC using
private key

Compute the
symmetric key

using RS and RC

Compute
key

Compute the
symmetric key
using RS and RCData encrypted using

symmetric key

Figure 7.13 Using symmetric and asymmetric encryption in TLS

Encrypt RS using
private key

Decrypt
RS

Hello

Verify

Exchange
data

End
session

End
session

Exchange
data

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• The digital certificate that the server sends to the client includes the server’s
public key. The server also generates a long random number, encrypts it using its
private key and sends this to the client.

• The client can then decrypt this using the server’s public key and, in turn,
generates its own long random number. It encrypts this number using the
server’s public key and sends it to the server, which decrypts the message using
its private key. Both client and server then have two long random numbers.

• The agreed encryption method includes a way of generating an encryption key
from these numbers. The client and server independently compute the key that
will be used to encrypt subsequent messages using a symmetric approach.

•All client-server traffic is encrypted and decrypted using that computed key.
There is no need to exchange the key itself.

TLS explained

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• As a product provider you inevitably store information about your users and, for cloud-
based products, user data.

• Encryption can be used to reduce the damage that may occur from data theft. If
information is encrypted, it is impossible, or very expensive, for thieves to access and use
the unencrypted data.

• Data in transit.
When transferring the data over the Internet, you should always use the https rather than the http
protocol to ensure encryption.

• Data at rest.
If data is not being used, then the files where the data is stored should be encrypted so that theft of these
files will not lead to disclosure of confidential information.

• Data in use
The data is being actively processed. Encrypting and decrypting the data slows down the system response
time. Implementing a general search mechanism with encrypted data is impossible.

Data encryption

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Encryption levels
Figure 7.14 Encryption levels

The operating system encrypts disks when they
are unmounted and decrypts these disks when
they are remounted.

The operating system encrypts individual files
when they are closed and decrypts them when
they are reopened.

The DMBS may encrypt the entire database
when it is closed, with the database decrypted
when it is reopened. Alternatively individal tables
or columns may be encrypted/decrypted.

The application decides what data should be
encrypted and decrypts that data immediately
before it is used.

Application

Database

Files

Media

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Key management is the process of ensuring that encryption keys
are securely generated, stored and accessed by authorized users.
• Businesses may have to manage tens of thousands of encryption

keys so it is impractical to do key management manually and you
need to use some kind of automated key management system
(KMS).
• Key management is important because, if you get it wrong,

unauthorized users may be able to access your keys and so decrypt
supposedly private data. Even worse, if you lose encryption keys,
then your encrypted data may be permanently inaccessible.
• A key management system (KMS) is a specialized database that is

designed to securely store and manage encryption keys, digital
certificates and other confidential information.

Key management

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Using a KMS for encryption management

API

Calls

Figure 7.15 Using a KMS for encryption management

Keys

Stored encrypted
data

Application

Unencrypted data

Encryption
engine

Key store

Key management
system

API

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Business may be required by accounting and other regulations to keep
copies of all of their data for several years.
• For example, in the UK, tax and company data has to be maintained for at least six years,

with a longer retention period for some types of data. Data protection regulations may
require that this data be stored securely, so the data should be encrypted.

• To reduce the risks of a security breach, encryption keys should be
changed regularly. This means that archival data may be encrypted with
a different key from the current data in your system.
• Therefore, key management systems must maintain multiple,

timestamped versions of keys so that system backups and archives can
be decrypted if required.

Long-term key storage

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Privacy is a social concept that relates to the collection,
dissemination and appropriate use of personal information held by
a third-party such as a company or a hospital.
• The importance of privacy has changed over time and individuals

have their own views on what degree of privacy is important.
• Culture and age also affect peoples’ views on what privacy means.
• Younger people were early adopters of the first social networks and many of them

seem to be less inhibited about sharing personal information on these platforms than
older people.

• In some countries, the level of income earned by an individual is seen as a private
matter; in others, all tax returns are openly published.

Privacy

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• If you are offering a product directly to consumers and you fail to
conform to privacy regulations, then you may be subject to legal action
by product buyers or by a data regulator. If your conformance is weaker
than the protection offered by data protection regulations in some
countries, you won’t be able to sell your product in these countries.
• If your product is a business product, business customers require privacy

safeguards so that they are not put at risk of privacy violations and legal
action by users.
• If personal information is leaked or misused, even if this is not seen as a

violation of privacy regulations, this can lead to serious reputational
damage. Customers may stop using your product because of this.

Business reasons for privacy

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• In many countries, the right to individual privacy is protected by
data protection laws.
• These laws limit the collection, dissemination and use of personal

data to the purposes for which it was collected.
• For example, a travel insurance company may collect health information so that they

can assess their level of risk. This is legal and permissible.

• However, it would not be legal for those companies to use this information to target
online advertising of health products, unless their users had given specific permission
for this.

Data protection laws

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Data protection laws

Data protection
laws

Responsibilities of
the data controller

Figure 7.16 Data protection laws

Rights of the
data subject

Data storage
Data use
Security

Subject access

Data access
Error correction
Data deletion

Consent

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Awareness and control
Users of your product must be made aware of what data is collected when they
are using your product, and must have control over the personal information
that you collect from them.
• Purpose

You must tell users why data is being collected and you must not use that data
for other purposes.
• Consent

You must always have the consent of a user before you disclose their data to
other people.
• Data lifetime

You must not keep data for longer than you need to. If a user deletes their
account, you must delete the personal data associated with that account.

Data protection principles (1)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Secure storage
You must maintain data securely so that it cannot be tampered
with or disclosed to unauthorized people.
• Discovery and error correction

You must allow users to find out what personal data that you store.
You must provide a way for users to correct errors in their personal
data.
• Location

You must not store data in countries where weaker data protection
laws apply unless there is an explicit agreement that the stronger
data protection rules will be upheld.

Data protection principles (2)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• You should to establish a privacy policy that defines how personal and sensitive
information about users is collected, stored and managed.

• Software products use data in different ways, so your privacy policy has to define the
personal data that you will collect and how you will use that data.

• Product users should be able to review your privacy policy and change their preferences
regarding the information that you store.

• Your privacy policy is a legal document and it should be auditable to check that it is
consistent with the data protection laws in countries where your software is sold.

• Privacy policies should not be expressed to users in a long ‘terms and conditions’
document that, in practice, nobody reads.

• The GDPR now require software companies to include a summary of their privacy policy,
written in plain language rather than legal jargon, on their website.

Privacy policy

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Security is a technical concept that relates to a software system’s ability to protect itself from malicious attacks that may threaten its
availability, the integrity of the system and/or its data, and the theft of confidential information.

• Common types of attack on software products include injection attacks, cross-site scripting attacks, session hijacking attacks, denial of
service attacks and brute force attacks.

• Authentication may be based on something a user knows, something a user has, or some physical attribute of the user.

• Federated authentication involves devolving responsibility for authentication to a third-party such as Facebook or Google, or to a
business’s authentication service.

• Authorization involves controlling access to system resources based on the user’s authenticated identity. Access control lists are the
most commonly-used mechanism to implement authorization.

• Symmetric encryption involves encrypting and decrypting information with the same secret key. Asymmetric encryption uses a key pair
– a private key and a public key. Information encrypted using the public key can only be decrypted using the private key.

Key Points

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• A major issue in symmetric encryption is key exchange. The TLS protocol, which is used to secure
web traffic, gets around this problem by using asymmetric encryption for transferring information
used to generate a shared key.

• If your product stores sensitive user data, you should encrypt that data when it is not in use.

• A key management system (KMS) stores encryption keys. Using a KMS is essential because a
business may have to manage thousands or even millions of keys and may have to decrypt historic
data that was encrypted using an obsolete encryption key.

• Privacy is a social concept that relates to how people feel about the release of their personal
information to others. Different countries and cultures have different ideas on what information
should and should not be private.

• Data protection laws have been made in many countries to protect individual privacy. They require
companies who manage user data to store it securely, to ensure that it is not used or sold without
the permission of users, and to allow users to view and correct personal data held by the system.

Key Points

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

End of Monday Lecture/Start of Tuesday Lecture

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

A/Prof Alex Potanin

Wyvern: Security via Programming
Language Design

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Software Security is a Big Problem

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• We “know” how to code securely
• Follow the rules: CERT, Oracle, …
• Technical advances: types, memory safety

• But we still fail too often!
• Root causes
• Coding instead of engineering
• Human limitations

• Unusable tools

Why Systems are Vulnerable?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Our Approach:
Usable Architecture-Based Security

Engineering:
An architecture/design

perspective

Formal Modelling:
A mathematical perspective

Usability:
A human perspective

Secure systems
development

𝜆

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Designed for security and productivity from the ground up
• General purpose, but emphasising web, mobile, and IoT apps

http://wyvernlang.github.io/

The Wyvern Programming Language

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

http://wyvernlang.github.io/

CRICOS PROVIDER #00120C

• But you might ask: “Isn’t there a trade-off between security and
productivity?
• What is Wyvern’s secret sauce?

The Wyvern Programming Language

Security

Productivity

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Shifting the Trade-off Curve

Security

Productivity

Better expressing and enforcing design
could fundamentally shift the trade-off curve.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Design goals
• Sound, modern language design
• Type- and memory- safe, mostly functional, advanced module system

• Incorporate usability principles

• Security mechanisms built in

The Wyvern Programming Language

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

require stdout
stdout.print(“Hello, world!\n”)

Hello, world!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

SQL Command Injection

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

PreparedStatement s = connection.prepareStatement(
“SELECT * FROM Students WHERE name = ?;”);

s.setString(1, userName);
s.executeQuery();

Evaluation:

• Usability: unnatural, verbose

• Design: string manipulation captures domain poorly

• Language semantics: largely lost – just strings
• No type checking, IDE services, …

SQL Injection: a Solved Problem?

Fill the hole
securely

Prepare a statement with
a hole

𝜆

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• SQL query in Wyvern
connection.executeQuery(~)

SELECT * FROM Students WHERE name = {studentName}

• Claim: the secure version more natural and more usable
• no empirical evaluation, but can be a project!

Wyvern: Usable Secure Programming
Introduces a domain-specific language

(DSL) on the next indented lines

Semantically rich DSL. Can provide type
checking, syntax highlighting, autocomplete, …

Safely incorporates dynamic data – as data,
not a command

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Language extensions as libraries has been tried before
• Example: SugarJ/Sugar* [Erdweg et al, 2010; 2013]

import XML, HTML
val snippet = ~

How do I parse this example?

Technical Challenge: Syntax Conflicts
𝜆

Is it XML or
HTML?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

import metadata XML, HTML

val snippet : XML = ~
How do I parse this example?

Syntax Conflicts: Wyvern Solution
metadata keyword indicates we are

importing syntax, not just a library

No ambiguity: the compiler loads the unique parser
associated with the expected type XML

Syntax of language completely unrestricted –
indentation separates from host language

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

import metadata SQL

val connection = SQL.connect(...)
val studentName = input(...)
connection.executeQuery(~)

SELECT * FROM Students WHERE name = {studentName}

Technical Challenge: Semantics 𝜆
Q: Is it safe to run custom parser at compiler time?
A: Yes – immutability types used to ensure imported metadata is
purely functional, has no network access, etc.

Language definition includes custom type checker – can
verify query against database schema

SQL extension has access to variables and their
types in Wyvern host language

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Our Approach:
Usable Architecture-Based Security

Engineering:
Express design in domain-

specific way

Formal Modelling:
Type safety, variable hygiene, conflict-free extensions

Usability:
Natural syntax, enabling IDE

support

DSL support in Wyvern

𝜆

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Lowest layer: an unsafe, low-level library

• Middle layer: a higher-level framework
• Top layer: the application
• Code must obey strict layering

• Many variants:
• Secure networking framework

• Safe SQL-access library

• Replicated storage library

• RQ: Can we use capabilities to enforce layered resource access?

An Old Idea: Layered Architectures

Application Code

Safe high-level
framework

Unsafe low-level library

[Dijkstra 1968]

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

“Every module must be able to access only the resources necessary for its legitimate
purpose.” [Saltzer & Schroeder 75]

Architecture:
Principle of Least Privilege

All other application
code

Safe SQL DSL Library

String-based SQL Library

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

require db.stringSQL

application.run()

Module Linking as Architecture

stringSQL

To access external resources like a database,
main requires a capability from the run-time
system. A capability is an unforgeable token

controlling access to a resource.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

require db.stringSQL

import db.safeSQL
import app.sqlApplication

val sql = safeSQL(stringSQL)
val application = sqlApplication(sql)

application.run()

Module Linking as Architecture

safeSQL

stringSQL

We can import code modules, but they have no ambient
authority to access resources (cf Newspeak).

sqlApplication cannot access the database by itself.

We must instantiate a sqlApplication object, passing
it the resources it needs. We pass only a capability to the

safe library.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

module def sqlApplication(safeSQL : db.SafeSQL)
def run() : Int

// application code

require db.stringSQL

import db.safeSQL
import app.sqlApplication

val sql = safeSQL(stringSQL)
val application = sqlApplication(sql)

application.run()

module def safeSQL(strSQL : db.StringSQL)
// implement ADT in terms of strings

Module Linking as Architecture

sqlApplication

safeSQL

stringSQL

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

• Most Wyvern modules don’t have state, can be freely imported
• Statically tracked: stateful modules/objects and resource types

type SetM

resource type Set

def add(v : Int)

def isMember(v : Int) : Bool

def makeSet() : Set

module setM : SetM

module def client(aFile : File)

import setM ...

• resource types capture state or system access: other types do not
• Useful design documentation; e.g. MapReduce tasks should be stateless
• Supports powerful equational reasoning, safe concurrency, etc.

How Hard to Link it All Up?

resource type File
def write(s : String)

Resources must be passed in; pure
modules can just be imported.

Type of modules is pure; no static
state. Objects created by module may

be stateful resources, though.

Provides access to
OS resource

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Our Approach:
Usable Architecture-Based Security

Engineering:
Architectural restrictions

on resource use

Formal Modelling:
Effect- and capability- safety, effect bounds

Usability:
Bound effects based on

architecture

Capabilities (and Effects*)
in Wyvern

𝜆

Effects are in a longer
version of this talk J

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

CRICOS PROVIDER #00120C

Questions?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: ARCHITECTURE

