
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

OPEN SOURCE

Week:
12 of 12

A/Prof Alex Potanin and Dr Melina Vidoni

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE2

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

• Open source development is an approach to software
development in which the source code of a software system is
published and volunteers are invited to participate in the
development process
• Its roots are in the Free Software Foundation (www.fsf.org), which

advocates that source code should not be proprietary but rather
should always be available for users to examine and modify as they
wish.
• Open source software extended this idea by using the Internet to

recruit a much larger population of volunteer developers. Many of
them are also users of the code.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE3

Open source development

CRICOS PROVIDER #00120C

• The best-known open source product is, of course, the Linux
operating system which is widely used as a server system and,
increasingly, as a desktop environment.
• Other important open source products are Java, the Apache web

server and the mySQL database management system.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE

4

Open source systems

CRICOS PROVIDER #00120C

• Should the product that is being developed make use of open
source components?
• Should an open source approach be used for the software’s

development?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE

5

Open source issues

CRICOS PROVIDER #00120C

• More and more product companies are using an open source
approach to development.
• Their business model is not reliant on selling a software product

but on selling support for that product.
• They believe that involving the open source community will allow

software to be developed more cheaply, more quickly and will
create a community of users for the software.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE

6

Open source business

CRICOS PROVIDER #00120C

• A fundamental principle of open-source development is that
source code should be freely available, this does not mean that
anyone can do as they wish with that code.
• Legally, the developer of the code (either a company or an individual) still owns the

code. They can place restrictions on how it is used by including legally binding
conditions in an open source software license.

• Some open source developers believe that if an open source component is used to
develop a new system, then that system should also be open source.

• Others are willing to allow their code to be used without this restriction. The
developed systems may be proprietary and sold as closed source systems.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE

7

Open source licensing

CRICOS PROVIDER #00120C

• The GNU General Public License (GPL). This is a so-called ‘reciprocal’ license that means that if
you use open source software that is licensed under the GPL license, then you must make that
software open source.

• The GNU Lesser General Public License (LGPL) is a variant of the GPL license where you can write
components that link to open source code without having to publish the source of these
components.

• The Berkley Standard Distribution (BSD) License. This is a non-reciprocal license, which means
you are not obliged to re-publish any changes or modifications made to open source code. You
can include the code in proprietary systems that are sold.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE

8

License models

CRICOS PROVIDER #00120C

• Establish a system for maintaining information about open-source
components that are downloaded and used.
• Be aware of the different types of licenses and understand how a

component is licensed before it is used.
• Be aware of evolution pathways for components.
• Educate people about open source.
• Have auditing systems in place.
• Participate in the open source community.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE

9

License management

CRICOS PROVIDER #00120C

10

“Free as in free speech.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

aka Free Software
aka Free and Open Source Software

11

Open Source

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

12

Open Source

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Free software origins (70-80s ~Stallman)
• Cultish Political goal
• Software part of free speech
• free exchange, free modification
• proprietary software is unethical
• security, trust

• GNU project, Linux, GPL license

• Open source (1998 ~ O'Reilly)
• Rebranding without political legacy
• Emphasis on internet and large dev./user involvement
• Openness toward proprietary software/coexist
• (Think: Netscape becoming Mozilla)

13

Free Software vs Open Source

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• The freedom to run the program as you
wish, for any purpose (freedom 0).
• The freedom to study how the program

works, and change it so it does your
computing as you wish (freedom 1). Access
to the source code is a precondition for this.
• The freedom to redistribute copies so you

can help your neighbor (freedom 2).
• The freedom to distribute copies of your

modified versions to others (freedom 3). By
doing this you can give the whole
community a chance to benefit from your
changes. Access to the source code is a
precondition for this.

14 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Free Software vs
Open Source

CRICOS PROVIDER #00120C

15

The Cathedral and the Bazaar

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

16

https://www.tesla.com/blog/all-our-patent-are-belong-you

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

17

Tables have turned

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

UNDERSTANDING LICENSES
NOTE: IANAL (I AM NOT A LAWYER)

19 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Companies will avoid certain licenses – commonly the copyleft
licenses
• Specific licenses may provide competitive advantages
• You may eventually want to release open source software or

become more involved in an open source project

20

Why learn about licenses?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

Software Percentage

MIT License 24%

GNU General Public License (GPL) 2.0 23%

Apache License 2.0 16%

GNU General Public License (GPL) 3.0 9%

BSD License 2.0 (3-clause, New or Revised) License 6%

GNU Lessor General Public License (LGPL) 2.1 5%

Artistic License (Perl) 4%

GNU Lesser General Public License (LGPL) 3.0 2%

Microsoft Public License 2%

Eclipse Public License 2%

21

Open Source Licenses

List from: https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Nobody should be restricted by the software they use. There are
four freedoms that every user should have:
• the freedom to use the software for any purpose,
• the freedom to change the software to suit your needs,
• the freedom to share the software with your friends and neighbors, and

• the freedom to share the changes you make.

• Code must be made available
• Any modifications must be relicensed under the same license

(copyleft)

22

GNU General Public License: The Copyleft
License

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• 2.0 - Court ruling cannot nullify the license and if a court decision
and this license contradict in distribution requirements, then the
software cannot be distributed
• 3.0 – patent grant and prevent Tivoization
• Not compatible with each other; Can’t copyleft both at the same

time – phrase: “GLP Version 3 or any later version”

23

GPL 2.0 and 3.0 – Addresses
free software problems

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

24

Why would projects choose one license
over another?

[From http://choosealicense.com/licenses/]ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Released as GPL which requires a company using the open source product to open
source it’s application

• Or companies can pay $2,000 to $10,000 annually to receive a copy of MySQL with a
more business friendly license

25

Dual License Business Model

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Sun open sourced OpenOffice, but when Sun was acquired by
Oracle, Oracle temporarily stopped the project.
• Many of the community contributors banded together and created

LibreOffice
• Oracle eventually released OpenOffice to Apache
• LibreOffice changed the project license so LibreOffice can copy

changes from OpenOffice but OpenOffice cannot do the same due
to license conflicts

26

Risk: Incompatible Licenses

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Must retain copyright credit
• Software is provided as is
• Authors are not liable for software
• No other restrictions

27

MIT License

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Software must be a library
• Similar to GPL but no copyleft requirement

28

LGPL

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• No liability and provided as is.
• Copyright statement must be included in source and binary
• The copyright holder does not endorse any extensions without

explicit written consent

29

BSD License

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Apache
• Similar to GPL with a few differences
• Not copyleft

• Not required to distribute source code
• Does not grant permission to use project’s trademark

• Does not require modifications to use the same license

30

Apache License

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

Perception:
• Anarchy
• Demagoguery
• Ideology
• Altruism
• Many eyes

31 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

DEPENDENCY MANAGEMENT & VERSIONING

32 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Michael Hilton and Rohan Padhye

CRICOS PROVIDER #00120C

33

Left-pad (March 22, 2016)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

34

Left-pad (March 22, 2016)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

35

Left-pad (Docs)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

36

Left-pad (Source Code)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

37

See also: isArray

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• It’s hard
• It’s mostly a mess (everywhere)
• But it’s critical to modern software development

38

Dependency Management

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Core of what most build systems do
• “Compile” and “Run Tests” is just a fraction of their job
• Examples: Maven, Gradle, NPM, Bazel, …
• Foo->Bar: To build Foo, you may need to have a built version of Bar
• Dependency Scopes:
• Compile: Foo uses classes, functions, etc. defined by Bar
• Runtime: Foo uses an abstract API whose implementation is provided by Bar (e.g. logging,

database, network or other I/O)
• Test: Foo needs Bar only for tests (e.g. JUnit, mocks)
• Internal vs. External Dependencies
• Is Bar also built/maintained by your org or is it pulled from elsewhere using a package

manager?

39

What is a Dependency?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

40

Dependencies: Example

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Should Git be able to use exports of libSSL (e.g. certificate
management) or zLib (e.g. gzip compression)?

41

Transitive Dependencies

Git SSH-
client

libSSL

zLib

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• What are some problems when multiple intermediate
dependencies have the same transitive dependency?

42

Diamond Dependencies

Git

SSH-
Client

libSSL

libHTTP

Generally, can also be across levels
Git

SSH-
Client

zLib

libSSSL

libHTTP

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• What are some problems when multiple intermediate
dependencies have the same transitive dependency?

43

Diamond Dependencies

Git
2.17.1

SSH-Client
1.7.6

libSSL
1.0.2

libHTTP
2.14

libSSL 1.1

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

1. Duplicate it!

• Doesn’t work with static linking (e.g. C/C++), but may be doable with Java (e.g. using ClassLoader hacking or package renaming)

• Values of types defined by duplicated libraries cannot be exchanged across
2. Ban transitive dependencies; just use a global list with one version for each

• Challenge: Keeping things in sync with latest

• Challenge: Deciding which version of transitive deps to keep
3. Newest version (keep everything at latest)

• Requires ordering semantics

• Intermediate dependency may break with update to transitive
4. Oldest version (lowest denominator)

• Also requires ordering semantics

• Sacrifices new functionality
5. Oldest non-breaking version / Newest non-breaking version

• Requires faith in tests or semantic versioning contract

44

Resolutions to the Diamond Problem

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Widely used convention for versioning releases

• E.g. 1.2.1, 3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rc1

• Format: {MAJOR} . {MINOR} . {PATCH}

• Each component is ordered (numerically, then lexicographically; release-aware)

• 1.2.1 < 1.10.1

• 3.1.0-alpha-1 < 3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0
• Contracts:

• MAJOR updated to indicate breaking changes

• Same MAJOR version => backward compatibility

• MINOR updated for additive changes

• Same MINOR version => API compatibility (important for linking)

• PATCH updates functionality without new API

• Ninja edit; usually for bug fixes

45

Semantic Versioning

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

46

https://semver.org/

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• E.g. Declare dependency on ”Bar > 2.1”
• Bar 2.1.0, 2.1.1, 2.2.0, 2.9.0, etc. all match
• 2.0.x does NOT match
• 3.0.x does NOT match

• Diamond dependency problem can be resolved using SAT solvers
• E.g. Foo 1.0.0 depends on “Bar >= 2.1” and “Baz 1.8.x”
• Bar 2.1.0 depends on “Qux [1.6, 1.7]”
• Bar 2.1.1 depends on “Qux 1.7.0”
• Baz 1.8.0 depends on “Qux 1.5.x”
• Baz 1.8.1 depends on “Qux 1.6.x”

• Find an assignment such that all dependencies are satisfied
• Solution: Use Bar 2.1.0, Baz 1.8.1, and Qux 1.6.{latest}

47

Dependency Constraints

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Largely trusting developers to
maintain them
• Constrained/range dependencies can

cause unexpected build failures
• Automatic validation of SemVer is

hard

48

Semantic Versioning Contracts

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• A very bad thing
• Avoid at all costs
• Sometimes unavoidable or intentional
• E.g. GCC is written in C (needs a C compiler)

• E.g. Apache Maven uses the Maven build system
• E.g. JDK tested using JUnit, which requires the JDK to compile

49

Cyclic Dependencies

A B

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Bootstrapping: Break cycles over time
• Assume older version exists in binary (pre-built form)
• Step 1: Build A using an older version of B
• Step 2: Build B using new (just built) version of A
• Step 3: Rebuild A using new (just built) version of B
• Now, both A and B have been built with new versions of their dependencies
• Doesn’t work if both A and B need new features of each other at the same time

(otherwise Step 1 won’t work)
• Assumes incremental dependence on new features

• How was the old version built in the first place? (it’s turtles all the way down)
• Assumption: cycles did not exist in the past
• Successfully applied in compilers (e.g. GCC is written in C)

50

Cyclic Dependencies

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Availability
• Remember left-pad?
• Many orgs will mirror package repositories

• Security
• Will you let strangers execute arbitrary code on your laptop?

• Think about this every time you do “pip install” or “npm install” or “apt-get updgrade”
or “brew updgrade” or whatever (esp. with sudo)
• Scary, right? Who are you trusting? Why?

• Typo squatting
• “pip install numpi”

51

Dependency Reliability

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• When developing software, you should always consider the possibility of reusing existing software, either
as components, services or complete systems.

• Configuration management is the process of managing changes to an evolving software system. It is
essential when a team of people are cooperating to develop software.

• Most software development is host-target development. You use an IDE on a host machine to develop the
software, which is transferred to a target machine for execution.

• Open source development involves making the source code of a system publicly available. This means that
many people can propose changes and improvements to the software.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE

52

Key points

CRICOS PROVIDER #00120C

• Understand the terminology “free software” and explain open
source culture and principles.
• Express an educated opinion on the philosophical/political debate

between open source and proprietary principles.

53

Key Points

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

• Dependency management is hard.

54

Key Points

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

