
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

A01 Abstract Data Types: Lists

ADTs
List as an ADT
A List interface

A01 Abstract Data Types: Lists 2

Abstract Data Types (ADTs)

Abstract data types* describe the behaviour (semantics) of a data
type without specifying its implementation. An ADT is thus
abstract, not concrete.

● A container is a very general ADT, a holder of objects.

● A list is an example of a more specific container ADT.

* Not to be confused with: Algebraic Data Type.

A01 Abstract Data Types: Lists 3

The List ADT

The list ADT is a container known mathematically as a finite sequence of elements. A
list has these fundamental properties:

● duplicates are allowed

● order is preserved

 A list may* support operations such as these:

● create: construct an empty list

● add: add an element to the list

● is empty: test whether the list is empty

* The operations a given ADT must support will vary depending on the author / library

A01 Abstract Data Types: Lists 4

Our List Interface

We will explore lists using a simple interface:

public interface List<T> {
 void add(T value);

 T get(int index);

 int size();

 T remove(int index);

 void reverse();
}

A01 Abstract Data Types: Lists 5

A B C D

A B CD

A B C D

void add(T value);

T get(int index);

int size();

T remove(int index);

void reverse();

String toString();

A B C D

A B C D

A B C D

C

4

A B CD

D B A

D B A D B A

D

2

2 C

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

A02 List Implementations

An array-based implementation
A linked-list-based implementation

A02 List Implementations 2

List Implementation Options

 Arrays

 Fast lookup of any element

 A little messy to grow and contract

 Linked list

 Logical fit to a list, easy to grow, contract

 Need to traverse list to access elements

A02 List Implementations 3

Linked Lists: Singly Linked List

A B C D

head

public class LinkedList<T> {

 private class Node<T> {

 T value;

 Node<T> next;

 }

 Node<T> head;

}
LinkedList

Nodes

A02 List Implementations 4

Linked List Reversal: Two Approaches

 Add each item to start:

A B C D

head

 Pointer reversal:

A

head

D C B A

head

B A

head

C B A

head

A B C D

tmp head

A B C D

tmp head

A B C D

tmp head

A B C D

head

A04 Sets: HashSet 5

Complexity

void add(T value);
T get(int index);
int size();
T remove(int index);
void reverse();

● add – Time O(1) amortized, O(n) worst
● get – Time O(1)
● size – Time O(1)
● remove – Time O(n)
● reverse – Time O(n)

Space O(n)

● add – Time O(1)
● if explicitly tracking last node

● get – Time O(n)
● size – Time O(1)

● if explicitly tracked
● remove – Time O(n)
● reverse – Time O(n)

ArrayList

LinkedList

Space O(n)

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

A03 Sets

Set ADT
A Set interface

A03 Sets 2

The Set ADT

The set ADT corresponds to a mathematical set. A set has these
fundamental properties:

● duplicates are not allowed

● order is not preserved

 A set may support operations such as these:

● create: construct an empty set

● add: add an element to the set

● contains: does the set contain a given element

● remove: remove an element from the set

A03 Sets 3

Our Set Interface

We will explore sets using a simple interface:

public interface Set<T> {

 boolean add(T value);

 boolean contains(T value);

 int size();

 boolean remove(T value);

}

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

A04 Sets: HashSet

Hash tables
A hash-table-based Set implementation

A04 Sets: HashSet 2

Hash Tables

Stores keys, using a hash function to map a key into a table entry. Optionally,
values can be associated with keys and stored alongside them in the table.

Main challenges are: a) dealing with hash collisions and dealing with load
(how big to make the table).

Two broad approaches:

● Separate chaining

– Hash table entries are lists: (key, value) pairs are in lists.

● Open addressing

– Hash table entries are (key, value) pairs.

– Collisions resolved by probing – e.g. find next entry slot

A04 Sets: HashSet 3

HashSet Implementation of a Set

● Special case of hash table where we only have key (it is not
associated with any value).

● We’ll demonstrate separate chaining where our lists only
needs to store a single item rather than a pair.

A04 Sets: HashSet 4

orange

apple banana

pear

apricot

peach

mango

plum

grape

cherry

a-f

g-m

n-t

u-z

fruit

apple

orange

banana

pear apricot

peachmango

plum
cherry

grape

A04 Sets: HashSet 5

fruit

orange

apple banana

pear

apricot

peach

mango

plum

grape

cherry

a-f

g-m

n-t

u-z

appleorangebananapearapricotpeachmangoplumgrapecherry

A04 Sets: HashSet 6

orange

apple banana

pear

apricot

peach

mango

plum

grape

cherry

a-f

g-m

n-t

u-z

fruit.contains(“orange”)

orangefiggrape

✓

✓

✗fruit.contains(“grape”)fruit.contains(“fig”)

fruit

The load factor is the ratio of number of elements to the number of

“buckets” (size of table).

By resizing (doubling) table capacity when lists grow “too long”, add and

contains can run in amortised constant time (assuming a good hash

function).

(Illustration from “Think Python: How to think like a computer scientists” (2nd ed) by Allen B. Downey.)

Load Factor

A04 Sets: HashSet 8

Complexity

boolean add(T value);
boolean contains(T value);
int size();
boolean remove(T value);

● add,contains,remove – Time O(1) amortized, O(n) worst
● good hash function
● table resized to keep table load factor in a range

● size – Time O(1)
● explicitly tracked

Space O(n)

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

A05 Sets: TreeSet

Tree as an ADT
A tree-based Set implementation

A05 Sets: TreeSet 2

Tree as an ADT

The tree ADT corresponds to an ordered tree in mathematics.

A tree is defined recursively in terms of nodes:

● A tree is a node

● A node contains a value and a list of trees

● No node is duplicated

A05 Sets: TreeSet 3

Binary Search Tree to Implement Set

A binary search tree is a tree with the following additional
properties:

● Each node has at most two sub-trees

● Nodes may contain (key, value) pairs, or just keys

● Keys are ordered within the tree:

– The left sub-tree only contains keys less than the node’s key

– The right sub-tree only contains keys greater than the node’s key

A05 Sets: TreeSet 4

orange

apple

pear

apricot peachmango plum

grape

cherry

banana

fruit

apple

orange

banana

pear apricot

peachmango

plum
cherry

grape

A05 Sets: TreeSet 5

orange

apple

pear

plum

grape

cherry

mango peachapricot

banana

fruit

appleorangebananapearapricotpeachmangoplumgrapecherry

A05 Sets: TreeSet 6

orange

apple

pear

plum

grape

cherry

mango peachapricot

banana

fruit

fruit.contains(“orange”)fruit.contains(“grape”)fruit.contains(“fig”) ✓

✓✗

Ordering in Java (Recall J14)

Objects of any class that implements the Comparable interface can be ordered:

a.compareTo(b)

● < 0 iff a is ordered before b

● > 0 iff a is ordered after b

● == 0 if a.equals(b) (but also if a and b are not ordered)

Our Set interface does not bound our contained type parameter to be Comparable, what to do?

● Bound T in the TreeSet class declaration:

– class TreeSet<T extends Comparable<T>> implements Set<T>

● Throw runtime exception on use of non-comparable types (the approach in java.utils.TreeSet).

● Force users to provide Comparator (e.g., as lambda expression).

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html

A04 Sets: HashSet 8

Complexity

boolean add(T value);
boolean contains(T value);
int size();
boolean remove(T value);

● add,contains,remove – Time O(log(n)) amortized, O(n) worst
● self-balancing trees (e.g., B-Trees) have O(log(n)) worst case

● size – Time O(1)
● explicitly tracked

Space O(n)

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

A06 Maps: HashMap and TreeMap

Map as an ADT
A Map interface
A hash-table-based Map implementation
A tree-based Map implementation

A06 Maps: HashMap and TreeMap 2

ADT Recap

First-principles implementation of three Java container types:

● List

– ArrayList, LinkedList implementations (A1, A2)

● Set

– HashSet, TreeSet implementations (A3, A4, A5)

● Map

– HashMap, TreeMap implementations (A6)

Introduced hash tables, trees (A4, A5)

A06 Maps: HashMap and TreeMap 3

The Map ADT (also known as Associative Array)

A map consists of (key, value) pairs

● Each key may occur only once in the map

● Values are retrieved from the map via the key

● Values may be modified

● Key, value pairs may be removed

A06 Maps: HashMap and TreeMap 4

Our Map Interface

We will explore maps using a simple interface:

public interface Map<K,V> {

 V put(K key, V value);

 V get(K key);

 V remove (K key);

 int size();

}

A06 Maps: HashMap and TreeMap 5

fruit

Abstract Data Types: Maps A6

orange

apple banana

pear

apricot

peach

mango

plum

grape

cherry

a-f

g-m

n-t

u-z

3.50 2.50 5.50 12.00

11.25 7.00

4.00 4.00 6.00 4.50

fruit.get(“apricot”)fruit.put(“grape”, 7.00)fruit.put(“orange”, 3.50)

5.50orangeapricotgrape

3.50

A06 Maps: HashMap and TreeMap 6

Abstract Data Types: Maps A6

orange

apple

pear

plum

grape

cherry

mango peachapricot

banana

fruit

3.50

2.50

5.50

12.

00

11.25

7.00

4.00

4.00

4.506.00

fruit.get(“apricot”)fruit.put(“grape”, 7.00)fruit.put(“orange”, 3.50)

5.50

3.50

	Slide 1
	Abstract Data Types (ADTs)
	The List ADT
	Our List Interface
	Slide 5
	Slide 1
	List Implementation: Linked Lists
	Slide 3
	Linked List Reversal: Two Approaches
	Slide 5
	Slide 1
	The Set ADT
	Our Set Interface
	Slide 1
	Hash Tables
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 1
	The Tree ADT
	Binary Search Tree
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 1
	ADT Recap
	The Map ADT (also known as Associative Array)
	Our Map Interface
	Slide 5
	Slide 6

