
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

A05 Sets: TreeSet

Tree as an ADT
A tree-based Set implementation



A05 Sets: TreeSet 2

Tree as an ADT

The tree ADT corresponds to an ordered tree in mathematics.

A tree is defined recursively in terms of nodes:
● A tree is a node
● A node contains a value and a list of trees
● No node is duplicated



A05 Sets: TreeSet 3

Binary Search Tree to Implement Set

A binary search tree is a tree with the following additional 
properties:

● Each node has at most two sub-trees
● Nodes may contain (key, value) pairs, or just keys
● Keys are ordered within the tree:

– The left sub-tree only contains keys less than the node’s key

– The right sub-tree only contains keys greater than the node’s key



A05 Sets: TreeSet 4

orange

apple

pear

apricot peachmango plum

grape

cherry

banana

fruit
apple

orange

banana

pear apricot

peachmango

plum
cherry

grape



A05 Sets: TreeSet 5

orange

apple

pear

plum

grape

cherry

mango peachapricot

banana

fruit

appleorangebananapearapricotpeachmangoplumgrapecherry



A05 Sets: TreeSet 6

orange

apple

pear

plum

grape

cherry

mango peachapricot

banana

fruit

fruit.contains(“orange”)fruit.contains(“grape”)fruit.contains(“fig”) ✓

✓✗



Ordering in Java (Recall J14)

Objects of any class that implements the Comparable interface can be ordered:

a.compareTo(b)
● < 0 iff a is ordered before b
● > 0 iff a is ordered after b
● == 0 if a.equals(b) (but also if a and b are not ordered)

Our Set interface does not bound our contained type parameter to be Comparable, what to do?

● Bound T in the TreeSet class declaration:

– class TreeSet<T extends Comparable<T>> implements Set<T>

● Throw runtime exception on use of non-comparable types (the approach in java.utils.TreeSet).

● Force users to provide Comparator (e.g., as lambda expression).

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html



A04 Sets: HashSet 8

Complexity

boolean add(T value);
boolean contains(T value);
int size();
boolean remove(T value);

● add,contains,remove – Time O(log(n)) amortized, O(n) worst
● self-balancing trees (e.g., B-Trees) have O(log(n)) worst case

● size – Time O(1)
● explicitly tracked

Space O(n)


	Slide 1
	The Tree ADT
	Binary Search Tree
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

