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S01 Software Development Tools

IDEs
Revision Control
Using Gitlab and Git
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Integrated Development Environments

● A rich context for software development

– Examples: Eclipse, IntelliJ, VisualStudio, XCode

● Syntax highlighting, continuous compilation, testing, debugging, 
packaging

● Powerful refactoring capabilities

● Code analysis
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Revision Control

● Indispensible software engineering tool

● Solitary work

– Personal audit trail and time machine

– Establish when bug was introduced

– Fearlessly explore new ideas (roll back if no good)

● Teamwork

– Concurrently develop

– Share work coherently
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Git

● Distributed version control system

– hg, git, others (conceptually very similar)

● Contrast with centralized version control

– cvs, svn, others

We will focus on distributed version control systems and not 
discuss centralized version control any further.
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Git & GitLab

push / pull

push / 
pull

fork
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IntelliJ Git Integration

● Clone an existing repository:

– “Get from VCS” on splash screen

● Other operations:

– Git menu

– right mouse click > Git
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S02 Revision Control

Git
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Git Concepts

 Commit (noun)

 Staging (IntelliJ allows you to more or less ignore this, so we will)

✔Commit  (atomically commit changes to your local repo)

✔Push  (push outstanding local changes to a remote repo)

✔Pull  (fetch new changes from a remote repo and merge / rebase locally) 

✔Update  (update your working version – specific to IntelliJ)

• Merge / Rebase

• Reset and Revert
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Git Commits

Captures a set of changes (e.g., modifications, additions, deletions) that may 
span multiple files.

● Globally unique commit ID (large hexadecimal number)

● Parent – child relationship

– Single parent, single child is simple case

– Multiple children indicates a branch

– Multiple parents indicates a merge

● Commits are usually never deleted

branch

merge
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A Little More on Update

Update will by default take you to the “HEAD” (the most recent 
known commit).

You can, however, “update” to any particular revision, moving 
yourself back and forward in time. To do this, you need to specify 
the revision.

In IntelliJ you can do this by double-clicking on the revision (Git -> 
Show Git Log, select the revision right click “Checkout revision”)
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Branches and Merging

A branch occurs when a commit has more than one child.

A merge is special commit with two parents (thus uniting 
branches).

If branches are conflicting (changes to the same file), those 
conflicts must be resolved before merging.
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Amend, Reset, Revert and Rebase

You can reset your local state to a particular commit (throwing away 
un-pushed changes whether committed or not) with reset.

You can also revert any particular commit. This amounts to applying 
a counteracting commit.

WARNING: The following commands will cause trouble if they 
“modify” commits that have been previously pushed:

You can amend a commit message, add more changes with amend.

You can interactively remove, combine, reorder and edit commits 
with rebase interactive.
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When All Else Fails

https://xkcd.com/1597/
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S03 Software Development Teams

Importance of people in software engineering
Understanding team effectiveness
Conflict and conflict resolution
Code of conduct



If you find yourself concentrating on the technology 

rather than the sociology, you’re like the vaudeville 

character who loses his keys on the dark street and 

looks for them at the adjacent street because, as he 

explains, “ The light is better there”.

Tom DeMarco
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Q: Why Do Software Projects Fail?

A: People
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Understanding Team Effectiveness

● Major Google study of 180 teams world-wide

– Gathered data on team members (attitudes, skills, personality, 
etc.)

– Used statistics to identify factors that correlated with performance

https://rework.withgoogle.com/guides/understanding-team-effectiveness/

https://rework.withgoogle.com/guides/understanding-team-effectiveness/
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Understanding Team Effectiveness

● Factors:

– Co-location of teammates 

– Consensus-driven decision making

– Extroversion of team members

– Individual performance of team members

– Workload size

– Seniority

– Team size

– Tenure

✘
These did not significantly impact the 

performance measure used by Google 

in their study.

This does not mean that these are not 

important factors in other settings or 

other regards.
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Conflict Resolution Strategies

Conflict is a part of any work environment.

Working under stress is bound to cause problems.

Stephanie Ray, 2018, 10 Conflict Resolution Strategies that Actually Work 
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Conflict Resolution Strategies

1) Define Acceptable Behavior

2) Don’t Avoid Conflict

3) Choose a Neutral Location

4) Start with a Compliment

5) Don’t Jump to Conclusions

6) Think Opportunistically, Not Punitively

7) Offer Guidance, Not Solutions

8) Constructive Criticism

9) Don’t Intimidate

10)  Act Decisively Stephanie Ray, 2018, 10 Conflict Resolution Strategies that Actually Work 
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https://comp.anu.edu.au/courses/comp1110/policies/#code-of-conduct

https://comp.anu.edu.au/courses/comp1110/policies/#code-of-conduct
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S04 Test-Driven Development

Test-driven development (TDD)
JUnit
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Types of Tests

● Unit tests: testing individual “units” / “modules”

– In OO a unit is at the level of a method or class

– Check the “building blocks” are functioning correctly

● Integration tests: the integration of multiple modules

– Expose problems with interface of modules and interactions 
between them

● System tests: end-to-end complete system

– Checking it meets its requirements
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Test Driven Development (TDD)

TDD “red, green, refactor”

1. Create test that defines new requirements

2. Ensure test fails

3. Write code to support new requirement

4. Run tests to ensure code is correct***

5. Then refactor and improve

6. Repeat

Key element of agile programming
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What Makes Good Unit Tests?

● Isolate behaviour / reduce dependencies

● Common path / usage

● Edge cases

● Touch on all branches

● Deterministic

● Limit false positives (test fails for correct code)

● Coverage
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JUnit

Unit testing for Java

● Developed by Kent Beck

– Father of extreme programming movement

● Integrated into IntelliJ

● Useful for:

– TDD (Test driven development)

– Bug isolation and regression testing

● Precisely identify the bug with a unit test

● Use test to ensure that the bug is not reintroduced
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JUnit

● Methods marked with @Test will be tested

● When JUnit is called on a class, all tests are run and a report is generated (a 
failed test does not stop execution of subsequent tests).

● JUnit has a rich set of annotations that can be used to configure the testing 
environment, including:

● @Test, @Ignore, @BeforeEach, @BeforeClass, @AfterEach, 

@AfterClass, @Timeout

● JUnit can check that an exception is thrown if that is expected in a certain case

– Assertions.assertThrows(
  ArithmeticException.class,
  () -> myMethod());
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S05 Code Review

Software Complexity
Code Review
Software Design
Comments and Documentation
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Software Complexity

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+
[<]<-]>>.>---.+++++++..+++.>>.<-.<.++
+.------.--------.>>+.>++.

● “Hello World” in the BrainF#@k language
(apparently: source wikipedia)

● Syntax only 8 characters, Turing complete

● Simple or complex?
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Software Complexity

● The International Obfuscated 
C Code Contest

● Yusuke Endoh one of the 2020 
winners: Minesweeper Solver
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What is Software Complexity?

● Accidental Complexity

– Software that is designed or presented in a way that is more 
difficult for a human to understand, use and modify than it 
needs to be.

– It is difficult to write elegant, clear, reusable code.

● Essential Complexity

– Inherent to the problem being solved. Irreducible.

● Not to be confused with computational complexity (about 
performance).
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Software Complexity

● Some contributing factors:

– Poorly named variables

– Not following conventions / inconsistency

– Interlinking many components

– Unstated assumptions

– Non-local changes, unintuitive side-effects

– Duplication / lack of encapsulation / exposure to details

● Often incrementally works its way into a project, e.g., feature 
creep, dealing with legacy.
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Code Review

● One or more people review code who are removed from the 
implementation.

● Commonly done for a specific change (e.g., set of git commits) but 
can also be done for a complete project / implementation.

– Fix a specific bug

– Implement a new feature

– Refactor part of the code

● Gitlab offers a “merge request” workflow (“pull request” on github) 
where reviewers / maintainers review the changes before they are 
merged into the mainline branch.
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Code Review Motivations

● Barrier to ensure project remains maintainable.

– Improve implementation / quality.

– Clarify code, double-check edge cases.

– On-balance rejection of a feature (accidental or essential complexity).

● Second pair of eyes: potentially less biased, can consider bigger picture, 
can bring new insight.

● Effective way to learn a new code-base and a team’s processes / 
conventions. Highlights interrelated parts.

● Can catch some bugs before reaching production… but implementer 
really should have adequate tests developed and passing.
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Doing a Code Review

● Objective: is it in scope of this project

● Functionality (for end-users and developers):

– does it do what is intended

– edge cases / bugs

– might have to run code for UI changes etc

● Tests: present, appropriate

● Complexity: design minimises / encapsulates complexity

● Good names: convey information and not too long

● Comments: help to understand decisions and the why, not repeating code, 
appropriately documenting interfaces

● Conformance to project style guide / conventions.
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Further Tips

● Be considerate.

● Point out things that are good!

● Clearly label nitpicks as such.

● No code is ever perfect. Tailor to circumstances: 

– flight control software

– a game
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Good Software Design

● Many opinions. Conventions / preferences vary between communities.

● Recommendation:

A Philosophy of Software Design, John Ousterhout

● Design principles
● Red flags
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Some Principles (Ousterhout) 

● Deep “modules” (method, class, package, or module)

– Simple interfaces* (narrow)

– Encapsulate lots of complexity (depth)

– General-purpose

● Prefer simple interface over simple implementation

● Design errors out of existence

● Design for ease of reading, not ease of writing

● Extra: Don’t Repeat Yourself (DRY) and SOLID principles

* Interfaces in the broad sense, not just the Java keyword



S05 Code Review 12

Some Red Flags (Ousterhout)

● Shallow module: interface not much simpler than implementation

● Overexposure: user needs to be aware of rarely-used features

● Repetition: non-trivial code is repeated

● Conjoined methods: methods are so co-dependent that you 
have to understand implementation of both

● Comment repeats code

● Hard to name entity

● Extra: Deeply nested control-flow blocks
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Code Comments / Documentation

● Class or method comments – always for public

– How to use, edge cases, side-effects, pre/post-conditions, invariants, 
explain abstraction, examples.

– Should not leak the implementation details.

● Implementation comments – as required

– Give intuition where implementation is non-obvious to a likely contributor / 
your future self

– Highlight where edge cases are handled if hidden

– Rationale for the design if not the obvious choice

– Should not just repeat code
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