
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

S01 Software Development Tools

IDEs
Revision Control
Using Gitlab and Git

S01 Software Development Tools 2

Integrated Development Environments

● A rich context for software development

– Examples: Eclipse, IntelliJ, VisualStudio, XCode

● Syntax highlighting, continuous compilation, testing, debugging,
packaging

● Powerful refactoring capabilities

● Code analysis

S01 Software Development Tools 3

Revision Control

● Indispensible software engineering tool

● Solitary work

– Personal audit trail and time machine

– Establish when bug was introduced

– Fearlessly explore new ideas (roll back if no good)

● Teamwork

– Concurrently develop

– Share work coherently

S01 Software Development Tools 4

Git

● Distributed version control system

– hg, git, others (conceptually very similar)

● Contrast with centralized version control

– cvs, svn, others

We will focus on distributed version control systems and not
discuss centralized version control any further.

S01 Software Development Tools 5

Git & GitLab

push / pull

push /
pull

fork

S01 Software Development Tools 6

IntelliJ Git Integration

● Clone an existing repository:

– “Get from VCS” on splash screen

● Other operations:

– Git menu

– right mouse click > Git

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

S02 Revision Control

Git

S02 Revision Control 2

Git Concepts

 Commit (noun)

 Staging (IntelliJ allows you to more or less ignore this, so we will)

✔Commit (atomically commit changes to your local repo)

✔Push (push outstanding local changes to a remote repo)

✔Pull (fetch new changes from a remote repo and merge / rebase locally)

✔Update (update your working version – specific to IntelliJ)

• Merge / Rebase

• Reset and Revert

S02 Revision Control 3

Git Commits

Captures a set of changes (e.g., modifications, additions, deletions) that may
span multiple files.

● Globally unique commit ID (large hexadecimal number)

● Parent – child relationship

– Single parent, single child is simple case

– Multiple children indicates a branch

– Multiple parents indicates a merge

● Commits are usually never deleted

branch

merge

S02 Revision Control 4

A Little More on Update

Update will by default take you to the “HEAD” (the most recent
known commit).

You can, however, “update” to any particular revision, moving
yourself back and forward in time. To do this, you need to specify
the revision.

In IntelliJ you can do this by double-clicking on the revision (Git ->
Show Git Log, select the revision right click “Checkout revision”)

S02 Revision Control 5

Branches and Merging

A branch occurs when a commit has more than one child.

A merge is special commit with two parents (thus uniting
branches).

If branches are conflicting (changes to the same file), those
conflicts must be resolved before merging.

S02 Revision Control 6

Amend, Reset, Revert and Rebase

You can reset your local state to a particular commit (throwing away
un-pushed changes whether committed or not) with reset.

You can also revert any particular commit. This amounts to applying
a counteracting commit.

WARNING: The following commands will cause trouble if they
“modify” commits that have been previously pushed:

You can amend a commit message, add more changes with amend.

You can interactively remove, combine, reorder and edit commits
with rebase interactive.

S02 Revision Control 7

When All Else Fails

https://xkcd.com/1597/

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

S03 Software Development Teams

Importance of people in software engineering
Understanding team effectiveness
Conflict and conflict resolution
Code of conduct

If you find yourself concentrating on the technology

rather than the sociology, you’re like the vaudeville

character who loses his keys on the dark street and

looks for them at the adjacent street because, as he

explains, “ The light is better there”.

Tom DeMarco

S03 Software Development Teams 3

Q: Why Do Software Projects Fail?

A: People

S03 Software Development Teams 4

Understanding Team Effectiveness

● Major Google study of 180 teams world-wide

– Gathered data on team members (attitudes, skills, personality,
etc.)

– Used statistics to identify factors that correlated with performance

https://rework.withgoogle.com/guides/understanding-team-effectiveness/

https://rework.withgoogle.com/guides/understanding-team-effectiveness/

S03 Software Development Teams 5

Understanding Team Effectiveness

● Factors:

– Co-location of teammates

– Consensus-driven decision making

– Extroversion of team members

– Individual performance of team members

– Workload size

– Seniority

– Team size

– Tenure

✘
These did not significantly impact the

performance measure used by Google

in their study.

This does not mean that these are not

important factors in other settings or

other regards.

S03 Software Development Teams 6

S03 Software Development Teams 7

Conflict Resolution Strategies

Conflict is a part of any work environment.

Working under stress is bound to cause problems.

Stephanie Ray, 2018, 10 Conflict Resolution Strategies that Actually Work

S03 Software Development Teams 8

Conflict Resolution Strategies

1) Define Acceptable Behavior

2) Don’t Avoid Conflict

3) Choose a Neutral Location

4) Start with a Compliment

5) Don’t Jump to Conclusions

6) Think Opportunistically, Not Punitively

7) Offer Guidance, Not Solutions

8) Constructive Criticism

9) Don’t Intimidate

10) Act Decisively Stephanie Ray, 2018, 10 Conflict Resolution Strategies that Actually Work

S03 Software Development Teams 9

https://comp.anu.edu.au/courses/comp1110/policies/#code-of-conduct

https://comp.anu.edu.au/courses/comp1110/policies/#code-of-conduct

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

S04 Test-Driven Development

Test-driven development (TDD)
JUnit

S04 Test-Driven Development 2

Types of Tests

● Unit tests: testing individual “units” / “modules”

– In OO a unit is at the level of a method or class

– Check the “building blocks” are functioning correctly

● Integration tests: the integration of multiple modules

– Expose problems with interface of modules and interactions
between them

● System tests: end-to-end complete system

– Checking it meets its requirements

S04 Test-Driven Development 3

Test Driven Development (TDD)

TDD “red, green, refactor”

1. Create test that defines new requirements

2. Ensure test fails

3. Write code to support new requirement

4. Run tests to ensure code is correct***

5. Then refactor and improve

6. Repeat

Key element of agile programming

S04 Test-Driven Development 4

What Makes Good Unit Tests?

● Isolate behaviour / reduce dependencies

● Common path / usage

● Edge cases

● Touch on all branches

● Deterministic

● Limit false positives (test fails for correct code)

● Coverage

S04 Test-Driven Development 5

JUnit

Unit testing for Java

● Developed by Kent Beck

– Father of extreme programming movement

● Integrated into IntelliJ

● Useful for:

– TDD (Test driven development)

– Bug isolation and regression testing

● Precisely identify the bug with a unit test

● Use test to ensure that the bug is not reintroduced

S04 Test-Driven Development 6

JUnit

● Methods marked with @Test will be tested

● When JUnit is called on a class, all tests are run and a report is generated (a
failed test does not stop execution of subsequent tests).

● JUnit has a rich set of annotations that can be used to configure the testing
environment, including:

● @Test, @Ignore, @BeforeEach, @BeforeClass, @AfterEach,

@AfterClass, @Timeout

● JUnit can check that an exception is thrown if that is expected in a certain case

– Assertions.assertThrows(
 ArithmeticException.class,
 () -> myMethod());

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

S05 Code Review

Software Complexity
Code Review
Software Design
Comments and Documentation

S05 Code Review 2

Software Complexity

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+
[<]<-]>>.>---.+++++++..+++.>>.<-.<.++
+.------.--------.>>+.>++.

● “Hello World” in the BrainF#@k language
(apparently: source wikipedia)

● Syntax only 8 characters, Turing complete

● Simple or complex?

S05 Code Review 3

Software Complexity

● The International Obfuscated
C Code Contest

● Yusuke Endoh one of the 2020
winners: Minesweeper Solver

S05 Code Review 4

What is Software Complexity?

● Accidental Complexity

– Software that is designed or presented in a way that is more
difficult for a human to understand, use and modify than it
needs to be.

– It is difficult to write elegant, clear, reusable code.

● Essential Complexity

– Inherent to the problem being solved. Irreducible.

● Not to be confused with computational complexity (about
performance).

S05 Code Review 5

Software Complexity

● Some contributing factors:

– Poorly named variables

– Not following conventions / inconsistency

– Interlinking many components

– Unstated assumptions

– Non-local changes, unintuitive side-effects

– Duplication / lack of encapsulation / exposure to details

● Often incrementally works its way into a project, e.g., feature
creep, dealing with legacy.

S05 Code Review 6

Code Review

● One or more people review code who are removed from the
implementation.

● Commonly done for a specific change (e.g., set of git commits) but
can also be done for a complete project / implementation.

– Fix a specific bug

– Implement a new feature

– Refactor part of the code

● Gitlab offers a “merge request” workflow (“pull request” on github)
where reviewers / maintainers review the changes before they are
merged into the mainline branch.

S05 Code Review 7

Code Review Motivations

● Barrier to ensure project remains maintainable.

– Improve implementation / quality.

– Clarify code, double-check edge cases.

– On-balance rejection of a feature (accidental or essential complexity).

● Second pair of eyes: potentially less biased, can consider bigger picture,
can bring new insight.

● Effective way to learn a new code-base and a team’s processes /
conventions. Highlights interrelated parts.

● Can catch some bugs before reaching production… but implementer
really should have adequate tests developed and passing.

S05 Code Review 8

Doing a Code Review

● Objective: is it in scope of this project

● Functionality (for end-users and developers):

– does it do what is intended

– edge cases / bugs

– might have to run code for UI changes etc

● Tests: present, appropriate

● Complexity: design minimises / encapsulates complexity

● Good names: convey information and not too long

● Comments: help to understand decisions and the why, not repeating code,
appropriately documenting interfaces

● Conformance to project style guide / conventions.

S05 Code Review 9

Further Tips

● Be considerate.

● Point out things that are good!

● Clearly label nitpicks as such.

● No code is ever perfect. Tailor to circumstances:

– flight control software

– a game

S05 Code Review 10

Good Software Design

● Many opinions. Conventions / preferences vary between communities.

● Recommendation:

A Philosophy of Software Design, John Ousterhout

● Design principles
● Red flags

S05 Code Review 11

Some Principles (Ousterhout)

● Deep “modules” (method, class, package, or module)

– Simple interfaces* (narrow)

– Encapsulate lots of complexity (depth)

– General-purpose

● Prefer simple interface over simple implementation

● Design errors out of existence

● Design for ease of reading, not ease of writing

● Extra: Don’t Repeat Yourself (DRY) and SOLID principles

* Interfaces in the broad sense, not just the Java keyword

S05 Code Review 12

Some Red Flags (Ousterhout)

● Shallow module: interface not much simpler than implementation

● Overexposure: user needs to be aware of rarely-used features

● Repetition: non-trivial code is repeated

● Conjoined methods: methods are so co-dependent that you
have to understand implementation of both

● Comment repeats code

● Hard to name entity

● Extra: Deeply nested control-flow blocks

S05 Code Review 13

Code Comments / Documentation

● Class or method comments – always for public

– How to use, edge cases, side-effects, pre/post-conditions, invariants,
explain abstraction, examples.

– Should not leak the implementation details.

● Implementation comments – as required

– Give intuition where implementation is non-obvious to a likely contributor /
your future self

– Highlight where edge cases are handled if hidden

– Rationale for the design if not the obvious choice

– Should not just repeat code

	Slide 1
	Integrated Development Environments
	Revision Control
	Git
	Git & GitLab
	IntelliJ Git Integration
	Slide 1
	Git Concepts
	Git Commits
	A Little More on Update
	Branches and Merging
	Amend Reset and Revert
	When All Else Fails
	Slide 1
	Slide 2
	Q: Why Do Software Projects Fail?
	Understanding Team Effectiveness
	Understanding Team Effectiveness (2)
	Slide 6
	Conflict Resolution Strategies
	Conflict Resolution Strategies (2)
	Slide 9
	Slide 1
	Slide 2
	Test Driven Development (TDD)
	Slide 4
	JUnit
	JUnit (2)
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

