

Integrated Development Environments

* Arich context for software development
- Examples: Eclipse, Intellid, VisualStudio, XCode

packaging

Powerful refactoring capabilities

Code analysis

Syntax highlighting, continuous compilation, testing, debugging,

S01 Software Development Tools

Revision Control

* |Indispensible software engineering tool
* Solitary work

- Personal audit trail and time machine

- Establish when bug was introduced

- Fearlessly explore new ideas (roll back if no good)
 Teamwork

— Concurrently develop

— Share work coherently

S01 Software Development Tools

* Distributed version control system
- hg, git, others (conceptually very similar)
e Contrast with centralized version control
— CVS, svn, others

We will focus on distributed version control systems and not
discuss centralized version control any further.

Git & GitLab

comp1110/ comp1110-abs
COMP1110 Lab 1

Purpose

Qo6 ok + o @

comp1110/ comp1110-labs

COMP1110 Lab 1

the

Purpose

comp1110/ comp1110-labs. Qe ok + o @

tools work.
ourse tutors Please make the most ofthe opportunty.

Tasks

1. Sotup your GitLab account.

tools work. This.
courss tutors. Please make the most of the opportuntty.

COMP1110 Lab 1 ‘

personal profe i you wish
s completes your GitLab setup.

Purpose
Tasks
toois work.
course tutors. Please make the most of the opportunty. o r 1. Setup your GitLab account.
You il use Git ¥
Firstyou need 1o set up your GiLab account. Log n to alab computer, open a browser, and go to GitLab,
/it cecs.an ock 2. Log into GitLab using the LDAP tab of the Sign i section of the font page.
Tasks tpigitat, eduau. Loginto
You yoo v passwor.
1. Setup your GitLab account.
Loy Goto , which is. i Lab
personal profie if you wish.
This completes your GitLab sefup.
il Login L
You shoud typ your studant 1D and your nonmal password
porsona profle H you wah
s competes your Giab setup.
comp1110/ comp1110-abs aoom+ 0w |

COMP1110 Lab 1

Purpose

the samoster

tools work.
ourse tutors. Please make the most of the oppartunty.

Tasks

1. Sotup your Gittab account.

You shauid type your student 1D and your normal password,

porsonal profe i you wish
This completes your GitLab setup.

S01 Software Development Tools 5

IntelliJ Git Integration

* Clone an existing repository:

- “Get from VCS” on splash screen
* Other operations:

- Git menu

— right mouse click > Git

S01 Software Development Tools

’ii))-ﬂ:-

Git Concepts

e Commit (noun)

e Staging (IntelliJ allows you to more or less ignore this, so we will)

v Commit (atomically commit changes to your local repo)

v Push (push outstanding local changes to a remote repo)

v Pull (fetch new changes from a remote repo and merge / rebase locally)

v Update (update your working version — specific to IntelliJ)
* Merge / Rebase

* Reset and Revert

S02 Revision Control

Git Commits

Captures a set of changes (e.g., modifications, additions, deletions) that may
span multiple files.

e Globally unigue commit ID (large hexadecimal number)
* Parent — child relationship

- Single parent, single child is simple case

Merge branch "Ash’

- Multiple children indicates a branch merge |+

Modified validity check for tiling move

— Multiple parents indicates a merge

skeleton for GetBonusPointTest

« Commits are usually never deleted

update name of Task 5 to getBonusPoints

L.

branch remove Tsuro code; new Task 5 getScore

S02 Revision Control

A Little More on Update

Update will by default take you to the “HEAD” (the most recent
known commit).

You can, however, “update” to any particular revision, moving
yourself back and forward in time. To do this, you need to specify
the revision.

In IntelliJ you can do this by double-clicking on the revision (Git ->
Show Git Log, select the revision right click “Checkout revision”)

S02 Revision Control 4

Branches and Merging

A branch occurs when a commit has more than one child.

A merge is special commit with two parents (thus uniting
branches).

If branches are conflicting (changes to the same file), those
conflicts must be resolved before merging.

S02 Revision Control

Amend, Reset, Revert and Rebase

You can reset your local state to a particular commit (throwing away
un-pushed changes whether committed or not) with reset.

You can also revert any particular commit. This amounts to applying
a counteracting commit.

WARNING: The following commands will cause trouble if they
“modify” commits that have been previously pushed:

You can amend a commit message, add more changes with amend.

You can interactively remove, combine, reorder and edit commits
with rebase interactive.

S02 Revision Control 6

When All Else Falls

THIS IS GIT: IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BERUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

(OOL. HOU DO LE-VSE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE. THEN] To SYNC IR
IF YoU GET ERRORS, SAVE YOUR WORK
ELSELHERE, DELETE THE PROJELT,
AND DOWNLOAD A FRESH COPY.

%@T’

https://xkcd.com/1597/

S02 Revision Control

‘l m po*rtar&%
Uh\‘:lérsta

ieﬁcGomputjng StructUred'Programmlng 1110/ 1140 /6710
.'""H _— “ - L - - L - \-... -

If you find yourself concentrating on the technology
rather than the sociology, you're like the vaudeville
character who loses his keys on the dark street and
looks for them at the adjacent street because, as he
explains, “ The light is better there”.

Tom DeMarco

Q: Why Do Software Projects Fail?

A. People

ﬁ‘“ F-ww;ha:-m = x: :‘;.ﬁ

Productive Prn;ects
and Teams

Tl-lmn EniTion

A Tes £
4 ;ﬁgﬁ o

£

rr’- Tﬁ: }}{:% { =

“""-*-.-—-.Il. 5;—
;‘..

c.-}:"" -j‘r ":? H*:n :

Tom EeMarm .

&
Timothy Lister

S03 Software Development Teams

Understanding Team Effectiveness

* Major Google study of 180 teams world-wide

- Gathered data on team members (attitudes, skills, personality,
etc.)

- Used statistics to identify factors that correlated with performance

https://rework.withgoogle.com/quides/understanding-team-effectiveness/

S03 Software Development Teams 4

’ii))-ﬂ:-

https://rework.withgoogle.com/guides/understanding-team-effectiveness/

Understanding Team Effectiveness

e Factors:
- Co-locatio
— Consen

making
embers
ce of team members

These did not significantly impact the
performance measure used by Google
in their study.

This does not mean that these are not
important factors in other settings or
other regards.

S03 Software Development Teams

Psychological Safety

Team members feel safe to take risks and
be vulnerable in front of each other.

..

S03 Software Development Teams

=

Conflict Resolution Strategies

Conflict is a part of any work environment.
Working under stress is bound to cause problems.

Stephanie Ray, 2018, 10 Conflict Resolution Strategies that Actually Work

L
)
=

S03 Software Development Teams 7

Conflict Resolution Strategies

1) Define Acceptable Behavior

2) Don’'t Avoid Conflict

3) Choose a Neutral Location

4) Start with a Compliment

5) Don’'t Jump to Conclusions

6) Think Opportunistically, Not Punitively
7) Offer Guidance, Not Solutions

8) Constructive Criticism

9) Don’t Intimidate
10) AcCt Decisively Stephanie Ray, 2018, 10 Conflict Resolution Strategies that Actually Work

'w"“
=

S03 Software Development Teams 8

https://comp.anu.edu.au/courses/comp1110/policies/#code-of-conduct

Code of Conduct

You have two primary responsibilities:

» Promote an inclusive, collaborative learning environment.
= Take action when others do not.

Professionally, we adhere to ACM's Code of Ethics. More broadly, a course like COMP1110
involves reflection, collaboration, and communication. Computer science has a checkered
history with respect to inclusion-in corporate environments, in our classrooms, and in the
products we create. We strive to promote characteristics of transparency and inclusivity that
reflect what we hope our field becomes (and not necessarily what it has been or is now).

Above all, be kind.

We reject behaviour that strays into harassment, no matter how mild. Harassment refers to
offensive verbal or written comments in reference to gender, sexual orientation, disability,
physical appearance, race, or religion; sexual images in public spaces; deliberate
intimidation, stalking, following, harassing photography or recording, sustained disruption of
class meetings, inappropriate physical contact, and unwelcome sexual attention.

If you feel someone is violating these principles (for example, with a joke that could be
interpreted as sexist, racist, or exclusionary), it is your responsibility to speak up! If the
behaviour persists, send a private message to your course convener to explain the situation.
We will preserve your anonymity.

(This code of conduct was developed by Evan Peck of Bucknell University. Portions of this
code of conduct are adapted from Dr. Lorena A. Barba)

S03 Software Development Teams

https://comp.anu.edu.au/courses/comp1110/policies/#code-of-conduct

* Unit tests: testing individual “units” / “modules”
- In OO a unit is at the level of a method or class
— Check the “building blocks” are functioning correctly
* Integration tests: the integration of multiple modules

- Expose problems with interface of modules and interactions
between them

* System tests: end-to-end complete system
— Checking it meets its requirements

Test Driven Development (TDD)

TDD *“red, green, refactor”

1. Create test that defines new requirements
2. Ensure test fails

3. Write code to support new requirement

4. Run tests to ensure code Is correct***

5. Then refactor and improve

6. Repeat

Key element of agile programming

S04 Test-Driven Development

..

What Makes Good Unit Tests?

* |solate behaviour / reduce dependencies

« Common path / usage

 Edge cases

* Touch on all branches

* Deterministic

* Limit false positives (test fails for correct code)
* Coverage

S04 Test-Driven Development

Unit testing for Java
* Developed by Kent Beck
- Father of extreme programming movement
* Integrated into IntelliJ
» Useful for:
- TDD (Test driven development)

- Bug isolation and regression testing
* Precisely identify the bug with a unit test
* Use test to ensure that the bug is not reintroduced

Methods marked with @Test will be tested

When JUnit is called on a class, all tests are run and a report is generated (a
failed test does not stop execution of subsequent tests).

JUnit has a rich set of annotations that can be used to configure the testing
environment, including:

@Test, @Ignore, @BeforeEach, @BeforeClass, @AfterEach,
@AfterClass, @Timeout

JUnit can check that an exception is thrown if that is expected in a certain case

- Assertions.assertThrows(
ArithmeticException.class,
() -> myMethod());

Software Complexity

++++++++H [SHHHH [S>HE>HHE>HHE>HKKK - [S>> +> - 5>+
[<]<-]>>.>---.+++++++, +++.>> ,<- <, ++
+,------ fmmm - S>>+, >+,

« “Hello World” in the BrainF#@k language
(apparently: source wikipedia)

« Syntax only 8 characters, Turing complete
« Simple or complex?

S05 Code Review

..

#include <time.h>
O Ware OI I l eXI #include <ncurses.h>
include <stdlib.h>
#define 0()for(y-= [NAN
y; Y<H&& /*...Semi-Automatic.*/y< p/W+2;\
y++)for(x=p% W,x-=!!1/%*..MineSweeper...*/Xx;x<W&& X<P%SW+2 ; X++)
#define X,y)COLOR ##x,COLOR ##y /* «click / (R)estart / (Q)uit */

* The International Obfuscated S i itﬁrae‘;‘?t"ﬁ iA%Ré“;’qf"X"?E“:é;’; Fikaafie e

C COde ConteSt | ? 1 r‘f L p q 9 8:0 re urn ; ‘
* Yusuke Endoh one of the 2020 [FeSRIEEESES
. . " *1,,12345678" [Kk=E?256&M 2:E-2| |[M[p]%2<1?M[p]&162q=p,m++,3:4
winners: Minesweeper Solver [sl T

refresh();}short B[RED, BLACK WHITE BLUE GREEN, RED MAGENTA, YELLOW)

CYAN,RED)};I main(I A,char**V){MEVENT e;FILE*f;srand(time (0 initscr();for(start\
color();X<12;X init pair(X B[X&&X<10?7X-1:2],B[X?X<372 0 noecho() ;cbreak
timeout(9);curs set(0);keypad(stdscr for(mousemask BUFIONl CLICKED |BUTTO\
N1 RELEASED, 0 S=A<27f=0,W=COLS/2,H=LINES-1,C=W*H/5,¢€ fscanf f fopen V A-11,"r"
"%d %d %d",&W,&H,&C)>3 S+=W*H;M=realloc(M,S zeof (I)*2);for
L<S;Hi f?M[i]=1i,i&&(k=M[j=rand()%i] ,M[j]1=M[i] ,M[i]=K):fscanf f
"sd" ,M+1);if (f)fclose(f);T=E=X=0; for(clear();D c=getch c-'r
c-KEY_RESIZE| |E if(c=="q’ return(endwin
KEY_MOUSE&&getmouse (&e)==0K&&e . x/2<W&&e.y<=H) {if('e.y&&(W-2
e.xX<W+2 break;}p=e.x/2+e.y*W-W;if (p>=0){if ('E){for(i
i]]=1i,M[1]=16+(M[1]<C);C-=M[p]&1;M[p]=16;E=1;T=-time(0)
257 1?T+=time(0),E 27313257 for(p=0;p<S E
X+5-1)%S; E==1&81 =X; X=(X+1)%S) {if M[p=M[X
){goto N for(k=p/W-2,k=k<0?0:k; k <p w
psW-2, j j<070:] j
k*W j

’fi))-ﬂ:-

S05 Code Review 3

What Is Software Complexity?

* Accidental Complexity

- Software that is designed or presented in a way that is more
difficult for a human to understand, use and modify than it
needs to be.

- It is difficult to write elegant, clear, reusable code.
 Essential Complexity
- Inherent to the problem being solved. Irreducible.

* Not to be confused with computational complexity (about
performance).

SO05 Code Review

Software Complexity

* Some contributing factors:
- Poorly named variables
- Not following conventions / inconsistency
- Interlinking many components
- Unstated assumptions
- Non-local changes, unintuitive side-effects
— Duplication / lack of encapsulation / exposure to details

* Often incrementally works its way into a project, e.qg., feature
creep, dealing with legacy.

S05 Code Review

* One or more people review code who are removed from the
Implementation.

 Commonly done for a specific change (e.g., set of git commits) but
can also be done for a complete project / implementation.

- Fix a specific bug
- Implement a new feature
- Refactor part of the code

» Gitlab offers a “merge request” workflow (“pull request” on github)
where reviewers / maintainers review the changes before they are
merged into the mainline branch.

Code Review Motivations

Barrier to ensure project remains maintainable.

- Improve implementation / quality.

— Clarify code, double-check edge cases.

- On-balance rejection of a feature (accidental or essential complexity).

« Second pair of eyes: potentially less biased, can consider bigger picture
can bring new insight.

» Effective way to learn a new code-base and a team’s processes /
conventions. Highlights interrelated parts.

* Can catch some bugs before reaching production... but implementer
really should have adequate tests developed and passing.

S05 Code Review 7

Doing a Code Review

Objective: is it in scope of this project
* Functionality (for end-users and developers):
- does it do what is intended
- edge cases / bugs
— might have to run code for Ul changes etc
» Tests: present, appropriate
« Complexity: design minimises / encapsulates complexity
* Good names: convey information and not too long

« Comments: help to understand decisions and the why, not repeating code,
appropriately documenting interfaces

« Conformance to project style guide / conventions.

S05 Code Review

Further Tips

Be considerate.

Point out things that are good!

Clearly label nitpicks as such.

No code is ever perfect. Tailor to circumstances:
- flight control software

- agame

S05 Code Review

Good Software Design

* Many opinions. Conventions / preferences vary between communities.
 Recommendation:
A Philosophy of Software Design, John Ousterhout

* Design principles
* Red flags

SO05 Code Review 10

Some Principles (Ousterhout)

Deep “modules” (method, class, package, or module)
- Simple interfaces* (narrow)

- Encapsulate lots of complexity (depth)

- General-purpose

Prefer simple interface over simple implementation

Design errors out of existence

Design for ease of reading, not ease of writing
« Extra: Don’t Repeat Yourself (DRY) and SOLID principles

* Interfaces in the broad sense, not just the Java keyword

S05 Code Review

11

..

Some Red Flags (Ousterhout)

* Shallow module: interface not much simpler than implementation
* Overexposure: user needs to be aware of rarely-used features
* Repetition: non-trivial code is repeated

 Conjoined methods: methods are so co-dependent that you
have to understand implementation of both

« Comment repeats code
 Hard to name entity
* Extra: Deeply nested control-flow blocks

S05 Code Review 12

Code Comments / Documentation

« Class or method comments — always for public

- How to use, edge cases, side-effects, pre/post-conditions, invariants,
explain abstraction, examples.

— Should not leak the implementation details.
* Implementation comments — as required

- Give intuition where implementation is non-obvious to a likely contributor /
your future self

- Highlight where edge cases are handled if hidden
- Rationale for the design if not the obvious choice
— Should not just repeat code

S05 Code Review 13

	Slide 1
	Integrated Development Environments
	Revision Control
	Git
	Git & GitLab
	IntelliJ Git Integration
	Slide 1
	Git Concepts
	Git Commits
	A Little More on Update
	Branches and Merging
	Amend Reset and Revert
	When All Else Fails
	Slide 1
	Slide 2
	Q: Why Do Software Projects Fail?
	Understanding Team Effectiveness
	Understanding Team Effectiveness (2)
	Slide 6
	Conflict Resolution Strategies
	Conflict Resolution Strategies (2)
	Slide 9
	Slide 1
	Slide 2
	Test Driven Development (TDD)
	Slide 4
	JUnit
	JUnit (2)
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

