

Software Complexity

++++++++ [SHHHH [S>HE>HHE>HHE>HKKK - [S>> +> - 5>+
[<]<-]>>.>---.+++++++, +++.>> ,<- <, ++
+,------ fmmm - - S>>+, >+,

« “Hello World” in the BrainF#@k language
(apparently: source wikipedia)

« Syntax only 8 characters, Turing complete
« Simple or complex?

SO05 Code Review

..

#include <time.h>
O Ware OI I l eXI #include <ncurses.h>
include <stdlib.h>
#define 0()for(y-= (AN
y; Y<H&& /*...Semi-Automatic.*/y< p/W+2;\
y++)for(x=p% W,x-=!!/%*..MineSweeper...*/X;x<W&& X<P%W+2 ; X++)
#define X,y)COLOR ##x,COLOR ##y /* click / (R)estart / (Q)uit */

* The International Obfuscated typedet Snt LIMMH,S,C,E. ‘X’A%Ré“;’qmipj”ﬂ“lééi GL1<m " 035615 F(T p){ I

0,X,y=p/W,q;0()g=y*W+x, r. 4 g p q M[9]&16)<<8:0 return ;I K(L p
C Code Contest il O e e
43688M W 12){ M[c=1
returnrc Co{d] 0,n 0,0 ‘nif LINEE l<H
* Yusuke Endoh one of the 2020 eSS : s e
.) "_*1..12345678" [k=E72565M[p] 2:E-2] [M[p]%2<17M[p]&167q=p, m++, 3:4+F (p) %1€
winners: Mlnesweeper SOIVer 2.6 it 1 Ume l 0Y,T W % E T I(xK(T E-1 :-)"v"a (;3d rgscimd’;f (n m”nn !
refresh():}short B RED,BLACK), (WHITE,BLUE), (GREEN,RED), (MAGENTA,YELLOW

CYAN,RED) };I main(I A,char**V){MEVENT e;FILE*f;srand(time(0 initscr();for(start\
color X X init pair(X B[X&&X<10?X I BIX@X<E) tnoecho cbreak
timeout(9);curs set(0);keypad(stdscr,TRUE); for(mousemask(BUTTON1 CLICKED|BUTTO\
N1 RELEASED S=A<2?f=0,W=COLS/2,H=LINES-1,C=W*H/5 fscanf (f=fopen(V[A-1],"r"
"%d %d %d",&W,&H,&C) >3 S+=W*H;M=realloc (M, S*:s) (T)E2)5 fon (!
=SBl f?M[i]=1i,i&&(k=M[j=rand()%1i] ,M[j]=M[1i i]=k):fscanf(f
"%d" ,M+1i);if (f)fclose(f);T=E=X=0;for(clear() ;D c=getch c-'r'
CEKEYBRESTZEIIE if(c=="q' return(endwin) if(c
KEY_MOUSE&Sgetmouse (&e)==0K&&e.Xx/2<W&&e.y<=H) {if('e.y&&(W-2<e.x
e. x<W+2 break; }p=e.x/2+e.y*W-W;if (p>=0){if (!'E){for (i i<S;i++)M[S+M
i]]=1,M[1]=16+(M[i]<C);C-=M[p M[p]=16;E=1;T=-time(0);}if (E<2)M[p M[p
) 1?T+=time E 34257 for(p=0;p<S&&E==1;M[p 5 for(i
X+S5-1)%S; E==18&1 1 =X; X=(X+1)%S) {if (! (M[p=M[X+5]]1&272)) {if (K(p,c=F(p
goto N for(k=p/W-2,k=k<070:Kk; k <p/W+3 k H; k++) for(j
p%W-2, j j<070]] w j p W aly Mlq
k*W j 272 p CHE
goto N; }F(q
F(p \

’fi))-ﬂ:-

SO05 Code Review 3

What Is Software Complexity?

* Accidental Complexity

- Software that is designed or presented in a way that is more
difficult for a human to understand, use and modify than it
needs to be.

- It is difficult to write elegant, clear, reusable code.
* Essential Complexity
— Inherent to the problem being solved. Irreducible.

* Not to be confused with computational complexity (about
performance).

S05 Code Review

Software Complexity

* Some contributing factors:
- Poorly named variables
- Not following conventions / inconsistency
- Interlinking many components
- Unstated assumptions
- Non-local changes, unintuitive side-effects
— Duplication / lack of encapsulation / exposure to details

* Often incrementally works its way into a project, e.qg., feature
creep, dealing with legacy.

SO05 Code Review

* One or more people review code who are removed from the
Implementation.

 Commonly done for a specific change (e.g., set of git commits) but
can also be done for a complete project / implementation.

- Fix a specific bug
- Implement a new feature
- Refactor part of the code

« Gitlab offers a “merge request” workflow (“pull request” on github)
where reviewers / maintainers review the changes before they are
merged into the mainline branch.

Code Review Motivations

Barrier to ensure project remains maintainable.

- Improve implementation / quality.

— Clarify code, double-check edge cases.

- On-balance rejection of a feature (accidental or essential complexity).

e Second pair of eyes: potentially less biased, can consider bigger picture
can bring new insight.

» Effective way to learn a new code-base and a team’s processes /
conventions. Highlights interrelated parts.

» Can catch some bugs before reaching production... but implementer
really should have adequate tests developed and passing.

SO05 Code Review 7

Doing a Code Review

Objective: is it in scope of this project
* Functionality (for end-users and developers):
- does it do what is intended
- edge cases / bugs
— might have to run code for Ul changes etc
* Tests: present, appropriate
« Complexity: design minimises / encapsulates complexity
* Good names: convey information and not too long

« Comments: help to understand decisions and the why, not repeating code,
appropriately documenting interfaces

« Conformance to project style guide / conventions.

SO05 Code Review

Further Tips

Be considerate.

Point out things that are good!

Clearly label nitpicks as such.

No code is ever perfect. Tailor to circumstances:
- flight control software

- agame

SO05 Code Review

Good Software Design

* Many opinions. Conventions / preferences vary between communities.
 Recommendation:
A Philosophy of Software Design, John Ousterhout

* Design principles
* Red flags

SO05 Code Review 10

Some Principles (Ousterhout)

Deep “modules” (method, class, package, or module)
- Simple interfaces* (narrow)

- Encapsulate lots of complexity (depth)

- General-purpose

Prefer simple interface over simple implementation

Design errors out of existence

Design for ease of reading, not ease of writing
« Extra: Don’t Repeat Yourself (DRY) and SOLID principles

* Interfaces in the broad sense, not just the Java keyword

SO05 Code Review

11

..

Some Red Flags (Ousterhout)

* Shallow module: interface not much simpler than implementation
* Overexposure: user needs to be aware of rarely-used features
* Repetition: non-trivial code is repeated

 Conjoined methods: methods are so co-dependent that you
have to understand implementation of both

« Comment repeats code
 Hard to name entity
* Extra: Deeply nested control-flow blocks

SO05 Code Review 12

Code Comments / Documentation

« Class or method comments — always for public

- How to use, edge cases, side-effects, pre/post-conditions, invariants,
explain abstraction, examples.

— Should not leak the implementation details.
* Implementation comments — as required

- Give intuition where implementation is non-obvious to a likely contributor /
your future self

— Highlight where edge cases are handled if hidden
- Rationale for the design if not the obvious choice
— Should not just repeat code

SO05 Code Review 13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

