
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

S05 Code Review

Software Complexity
Code Review
Software Design
Comments and Documentation



S05 Code Review 2

Software Complexity

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+
[<]<-]>>.>---.+++++++..+++.>>.<-.<.++
+.------.--------.>>+.>++.

● “Hello World” in the BrainF#@k language
(apparently: source wikipedia)

● Syntax only 8 characters, Turing complete
● Simple or complex?



S05 Code Review 3

Software Complexity

● The International Obfuscated 
C Code Contest

● Yusuke Endoh one of the 2020 
winners: Minesweeper Solver



S05 Code Review 4

What is Software Complexity?

● Accidental Complexity
– Software that is designed or presented in a way that is more 

difficult for a human to understand, use and modify than it 
needs to be.

– It is difficult to write elegant, clear, reusable code.

● Essential Complexity
– Inherent to the problem being solved. Irreducible.

● Not to be confused with computational complexity (about 
performance).



S05 Code Review 5

Software Complexity

● Some contributing factors:
– Poorly named variables

– Not following conventions / inconsistency

– Interlinking many components

– Unstated assumptions

– Non-local changes, unintuitive side-effects

– Duplication / lack of encapsulation / exposure to details

● Often incrementally works its way into a project, e.g., feature 
creep, dealing with legacy.



S05 Code Review 6

Code Review

● One or more people review code who are removed from the 
implementation.

● Commonly done for a specific change (e.g., set of git commits) but 
can also be done for a complete project / implementation.
– Fix a specific bug

– Implement a new feature

– Refactor part of the code

● Gitlab offers a “merge request” workflow (“pull request” on github) 
where reviewers / maintainers review the changes before they are 
merged into the mainline branch.



S05 Code Review 7

Code Review Motivations

● Barrier to ensure project remains maintainable.
– Improve implementation / quality.

– Clarify code, double-check edge cases.

– On-balance rejection of a feature (accidental or essential complexity).

● Second pair of eyes: potentially less biased, can consider bigger picture, 
can bring new insight.

● Effective way to learn a new code-base and a team’s processes / 
conventions. Highlights interrelated parts.

● Can catch some bugs before reaching production… but implementer 
really should have adequate tests developed and passing.



S05 Code Review 8

Doing a Code Review

● Objective: is it in scope of this project
● Functionality (for end-users and developers):

– does it do what is intended

– edge cases / bugs

– might have to run code for UI changes etc

● Tests: present, appropriate
● Complexity: design minimises / encapsulates complexity
● Good names: convey information and not too long
● Comments: help to understand decisions and the why, not repeating code, 

appropriately documenting interfaces
● Conformance to project style guide / conventions.



S05 Code Review 9

Further Tips

● Be considerate.
● Point out things that are good!
● Clearly label nitpicks as such.
● No code is ever perfect. Tailor to circumstances: 

– flight control software

– a game



S05 Code Review 10

Good Software Design

● Many opinions. Conventions / preferences vary between communities.
● Recommendation:

A Philosophy of Software Design, John Ousterhout

● Design principles
● Red flags



S05 Code Review 11

Some Principles (Ousterhout) 

● Deep “modules” (method, class, package, or module)
– Simple interfaces* (narrow)

– Encapsulate lots of complexity (depth)

– General-purpose

● Prefer simple interface over simple implementation
● Design errors out of existence
● Design for ease of reading, not ease of writing
● Extra: Don’t Repeat Yourself (DRY) and SOLID principles

* Interfaces in the broad sense, not just the Java keyword



S05 Code Review 12

Some Red Flags (Ousterhout)

● Shallow module: interface not much simpler than implementation
● Overexposure: user needs to be aware of rarely-used features
● Repetition: non-trivial code is repeated
● Conjoined methods: methods are so co-dependent that you 

have to understand implementation of both
● Comment repeats code
● Hard to name entity
● Extra: Deeply nested control-flow blocks



S05 Code Review 13

Code Comments / Documentation

● Class or method comments – always for public

– How to use, edge cases, side-effects, pre/post-conditions, invariants, 
explain abstraction, examples.

– Should not leak the implementation details.

● Implementation comments – as required
– Give intuition where implementation is non-obvious to a likely contributor / 

your future self

– Highlight where edge cases are handled if hidden

– Rationale for the design if not the obvious choice

– Should not just repeat code


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

