
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C01 RecursionC01 Recursion

Recursive data structures
Recursive algorithms

Recursive data structures
Recursive algorithms

C01 Recursion 5

Recursive Data Structures

A recursive data structure is comprised of components that
reference other components of the same type.

A B C D

Head

Linked list

Tree

A

B

C D E

F

G H

Root

C01 Recursion 6

Recursive Algorithms

A recursive algorithm reduces a computational problem to one or
more smaller instances of the same problem, and composes the
solution from their solutions.

A recursive algorithm is comprised of:

● Base case(s) that terminate the recursion

● Recursive call(s) that reduces towards the base case(s)

C01 Recursion 7

Example: Fibonacci Sequence

fib(0) = 0 (base case)

fib(1) = 1 (base case)

fib(n) = fib(n-1) + fib(n-2) (for n ≥ 2)

88

55

33
22

11 11

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377…

C01 Recursion 8

Example: Binary Search

Ordered list and a target value to find.

[1, 4, 5, 7, 9, 11, 15, 20, 25] find 11

[1, 4, 5, 7, 9, 11, 15, 20, 25] 9 > 11? right half

 [9, 11, 15, 20, 25] 15 > 11? left half

 [9, 11] 9 > 11? right half
 [11]

How does this compare to linear search?

What might the base case(s) be?

C01 Recursion 9

Sort a list

● List of size 1 (base case)

– Already sorted

● List of size > 1

– Split into two sub lists

– Sort each sub list (recursion)

– Merge the two sorted sub lists
into one sorted list (by iteratively
picking the lower of the two least
elements)

Example: Mergesort (von Neumann, 1945)

Animation: Visualizing Algorithms, Mike Bostock, bost.ocks.org/mike/algorithms

C01 Recursion 10

Recursion

● A recursive method (function) calls itself: this works because of
the call stack.

● A recursive method can always be rewritten into an iterative one
and vice-versa (consequence of Church-Turing thesis).

● When to use recursion vs when to use iteration (for and

while loops)?

– The problem at hand might be more naturally written and read in
one form (once you understand recursion!).

– Converting between approaches not always straightforward.

C01 Recursion 11

Recursion and Java

● Overhead of calling calling methods often higher than iterating

● Stack overflow on larger problems

● Compilers in many other languages perform tail-call elimination
for certain forms of recursion – Java doesn’t

● More functional languages (scheme, lisp, ocaml, haskell, f#,
scala) make recursion more convenient

● Situations where recursion is best are more limited in Java – but
important cases still exist!

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C02 Computational ComplexityC02 Computational Complexity

Time and Space Complexity
Algorithm vs Problem Complexity
Big O Notation
Examples

Time and Space Complexity
Algorithm vs Problem Complexity
Big O Notation
Examples

C02 Computational Complexity 2

Computational Complexity

Key computational resources:

● Time

● Space

● Energy, communications, I/O, samples...

Computational complexity is the study of how problem size affects
resource consumption (how it scales). Distinguish:

● Algorithm Complexity: for a given algorithm / implementation

● Problem Complexity: for any algorithm that solves the problem

– Inherit difficulty of the problem (Computational Complexity Theory)

C02 Computational Complexity 3

Algorithm Complexity

● Identify n, the number that characterizes the problem size.

– Number of pixels on screen

– Number of elements to be sorted

– etc.

● Study the algorithm to determine how resource consumption changes as a function of n.

● The content of the input, not just its size, can be important. Can study:

– Worst case (the worst input of size n)

– Best case (the best input of size n)

– Average case (average of distribution of inputs of size n)

– Amortized analysis (amortized cost over a sequence of n typical operations)

● Useful for an operation with state that occasionally has an expensive step

C02 Computational Complexity 4

Big O Notation

Suppose we have a problem of size n that takes g(n) time to
execute in the average case.

We say:

 g(n) O(f(n))∈

iff there exists constants c > 0 and

n0 > 0 such that for all n > n0 :

 g(n) ≤ c × f(n)

f(n) = n

3 f(n) = 3 n

C02 Computational Complexity 5

Time complexity

In analysis of algorithm time complexity, we are interested in the
number of “elementary operations/statements” (not μs).

● Simple statements are constant time.

● Remember the factor c in O(f(n)).

● Beware: Library/subroutine calls can have arbitrary complexity.

C02 Computational Complexity 6

Example: Greatest Up To

Find the greatest element ≤ x in an unsorted sequence of n
elements (or else return null).

Two approaches:

● a) search the unsorted sequence; or

● b) first sort the sequence, then search the sorted sequence.

C02 Computational Complexity 7

Analysis
● If we’re lucky, uList[0] == x.
● Worst case?

● uList = {x – n, ..., x – 2, x – 1}
● f(n) = 6n, so O(n)

Unsorted Greatest Up To

static Integer unsortedFind(int x, List<Integer> uList) {
 Integer best = null;
 for (var e : uList) {
 if (e == x)
 return e;
 if (e <= x && (best == null || e > best))
 best = e;
 }
 return best;
}

C02 Computational Complexity 8

C02 Computational Complexity 9

Analysis
● How many iterations of the loop?
● Initially, upper – lower = n.
● The difference is halved in every iteration.
● Can halve it at most log

2
(n) times before it becomes 1.

● f(n) = a log
2
(n) + b, so O(log(n)).

Sorted Greatest Up To

static Integer sortedFind(int x, ArrayList<Integer> sList) {
 if (sList.isEmpty() || sList.get(0) > x)
 return null;
 int lower = 0;
 int upper = sList.size(); // one past the end
 while (upper - lower > 1) {
 int mid = (lower + upper) / 2;
 if (sList.get(mid) <= x)
 lower = mid;
 else
 upper = mid;
 }
 return sList.get(lower);
}

C02 Computational Complexity 10

C02 Computational Complexity 11

Problem complexity

The complexity of a problem is the resources (time, memory, etc)
that any algorithm must use, in the worst case, to solve the
problem, as a function of instance size.

C02 Computational Complexity 12

How fast can you sort?

Any sorting algorithm that uses only pair-wise comparisons

needs O(n log(n)) comparisons in the worst case.

log(n!) = log(1) + log(2) + … + log(n) ≤ n log(n) for large enough n.

C02 Computational Complexity 13

C02 Computational Complexity 14

Rate of Growth

T
(2

n
)

/
2
 T

(n
)

C02 Computational Complexity 15

Example: Summing a List

Consider summing a list of size n…

public int sum(List<Integer> list) {

 int result = 0;

 for (var i : list) {

 result += i;

 }

 return result;

} Linear time, O(n)

C02 Computational Complexity 16

Example: Minimum Difference

public int minDiff(List<Integer> values) {

 int min = Integer.MAX_VALUE;

 for (int i = 0; i < values.size(); i++) {

 for (int j = i + 1; j < values.size(); j++) {

 int diff = values.get(i) – values.get(j);

 if (Math.abs(diff) < min)

 min = Math.abs(diff);

 }

 }

 }

S(n) = 1 + n + 4 (n(n – 1)/2)

 = 1 + n + 2 n2 – 2n

 = 2n2 – n + 1 O(n∈
2)

n(n – 1)/2

n(n – 1)/2

n(n – 1)/2

<= n(n – 1)/2

n

1

Note: n – 1 + n – 2 + … 2 + 1 = n(n – 1)/2

C02 Computational Complexity 17

More Examples
● Constant O(1)

– Time to perform an addition; swap two elements in an array; compare two numbers

– Time to do any of the above 1000 times.

● Logarithmic O(log(n))

– Time to find an element in a B-Tree (self-balancing tree)

● Linear O(n)

– Time to find an element in a list; sum a list of numbers

– Find the min/max in a list?

● O(n log(n))

– Time to sort using mergesort

● Quadratic O(n2)

– Time to compare n elements with each other pair-wise.

C02 Computational Complexity 18

Caution

“Premature optimization is the root of all evil in programming.”

(C.A.R. Hoare)

Scaling behaviour becomes important when problems become
large, or when they need to be solved very frequently.

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C03 Graph TraversalC03 Graph Traversal

Graphs and Trees
Traversal

Graphs and Trees
Traversal

C03 Graph Traversal 2

Graphs and Trees

● A powerful abstraction in computing.

A

B

C

D

Nodes: A B C D
Edges: (A, B) (B, C) (A, C) (C, A) (A, D)

Directed Graph

a

b c

d e f

Directed Rooted Tree

(connected acyclic directed graph)

With ordering of children: Ordered Tree

C03 Graph Traversal 3

Tree Features

a

b c

d e f

root

leaves

depth

0

1

2

b is the parent of d and e

d is a child of b

b has a branching factor (outdegree) of
2 (the number of children)

height

2

1

0

C03 Graph Traversal 4

Traversal

● Visiting the elements in a data structure:

– searching

– modifying

– reachability

– path finding

● Lists / arrays are a form of “linear data structure” that has a
natural sequence for traversal.

● Trees and Graphs can be traversed in many ways.

C03 Graph Traversal 5

Tree Traversal

● Special case of graph traversal.

● Two common forms:

– Depth-First Search (DFS)

● Explore as deep as possible along a branch until a leaf is
reached.

● Backtrack to another branch (e.g., sibling of leaf, or sibling of
parent, or …).

– Breadth-First Search (BFS)

● Starting at root, visit all nodes at given depth before going deeper.

C03 Graph Traversal 6

DFS and BFS

a

b c

d e f

a

b c

d e f

1

2

3 4

5

6

Pre-order DFS traversal
a b d e c f

1

2 3

4 5 6

BFS traversal
a b c d e f

C03 Graph Traversal 7

Implementing Tree Traversal

● Depth-First Search (DFS)

– Iteratively using a Stack: Last-In First-Out (LIFO) data structure

– Recursively by implicitly using the call stack

– Variations on ordering: post-order, pre-order, in-order

● Breadth-First Search (BFS)

– Iteratively using a Queue: First-In First-Out (FIFO) data structure

– Corecursively* by passing all sub-trees of same level

– Only one ordering

* Building (generating) data from a simple “base case”, rather than breaking down
(reducing) data until base case reached.

C03 Graph Traversal 8

Implementation DFS: Stack

a

b c

d e f

1

2

3 4

5

6

0 push a: [a]
1 pop: [] a
 push c: [c]
 push b: [c b]
2 pop: [c] b
 push e: [c e]
 push d: [c e d]
3 pop: [c e] d
4 pop: [c] e
5 pop: [] c
 push f: [f]
6 pop: [] f

Pre-order DFS traversal
a b d e c f

Stack []: push onto end, pop off end

DFS: pop node, push it’s children, repeat.

C03 Graph Traversal 9

Implementation BFS: Queue

a

b c

d e f

1

2 3

4 5 6

BFS traversal
a b c d e f

0 enq a: {a}
1 deq: {} a
 enq b: {b}
 enq c: {b c}
2 deq: {c} b
 enq d: {c d}
 enq e: {c d e}
3 deq: {d e} c
 enq f: {d e f}
4 deq: {e f} d
5 deq: {f} e
6 deq: {} f

Queue { }: enqueue onto back, dequeue off front

BFS: dequeue node, enqueue it’s children, repeat.

C03 Graph Traversal 10

Graph Traversal

● DFS and BFS generalise from tree traversal.

● Starting node selected based on problem.

● Additionally need to keep track of “visited” nodes to avoid
cycling.

B

A

C

E

F

D

1

2

3

4
5

6

B

A

C

E

F

D

1

2

4

6
3

5

C03 Graph Traversal 11

Example: Distance Between Nodes

● The distance between A and E is the number of edges on a shortest path
between the two nodes.

● BFS can naturally track the distance.

● DFS might visit E via a non-shortest path – need to revisit nodes

B

A

C

E

F

D

1

2

3

4
5

6

B

A

C

E

F

D

1

2

4

6
3

5

C03 Graph Traversal 12

Styles of Using DFS

● Using DFS as skeleton for our code, i.e. we only really care
about the traversal pattern.

a

b c

d e f

1

2

3 4

5

6

DFS Emit/write some data at
each step

Stdout

HashSet

ArrayList

Database

a

b

d

...

C03 Graph Traversal 13

Styles of Using DFS

● Height/longest path calculation using a single counter

a

b c

d e f

1

2

3 4

5

6

DFS a

b

d

d

Action Current Best

0 0

+1 1 0

+1 2 0

+1, update best 3 3

-1 (undo) 2 3

jump to next child 2 3

+1, update best 3 3

-1 (undo) 2 3

e

Problem: Not all data structures have a clear notion of “undo”,
e.g. set

e

b

C03 Graph Traversal 14

Styles of Using DFS

● Height/longest path calculation using record of history

a

b c

d e f

1

2

3 4

5

6

DFS

a

b

d

b

Current Action Lengths/history

1 []

2 []

3 Record cur [3]

2 [3]

3 Record cur [3, 3]e

C03 Graph Traversal 15

Styles of Using DFS

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

DFS [
 [a, b, d],
 [a, b, e],
 [a, c, f],
]

Array of paths

Filter

Statistics

...

C03 Graph Traversal 16

Building the data bottom up

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

[[d]] [[e]]

[[b,d], [b,e]] [[c,f]]

[[f]]

[[a,b,d],[a,b,e],[a,c,f]]
“Concatenation” here is in some sense “combine and flatten”

 [[x0,x1,…]] + [[y0,y1…]]

- combine →
 (combining directly adds one layer of container,
 i.e. we have container of containers of containers)

 [[[x0,x1,…], [y0,y1,…]]]

- flatten →
 (flattening removes that extraneous layer,
 so we get “container of containers” back)

 [[x0,x1,…],[y0,y1,...]]

C03 Graph Traversal 17

Building the data bottom up with flat map

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

[[d]] [[e]]

[[b,d], [b,e]] [[c,f]]

[[f]]

[[a,b,d],[a,b,e],[a,c,f]] “Flat map” (or “concat map”) is then an extension of that idea

[x, y, z]

[x0,x1,x2] [y0] [z0,z1,z2,z3]

map

flatten/concat

[x0, x1, x2, y0, z0, z1, z2, z3]

C03 Graph Traversal 18

Building the data bottom up with flat map

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

[[d]] [[e]]

[[b,d], [b,e]] [[c,f]]

[[f]]

[[a,b,d],[a,b,e],[a,c,f]] Looking at the bottom left subtree with b as root

[d, e]

[[d]] [[e]]

map (recursive call)

flatten/concat

map (add b)

[[d],[e]]

[[b,d],[b,e]]

C03 Graph Traversal 19

Building the data bottom up with flat map

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

[[d]] [[e]]

[[b,d], [b,e]] [[c,f]]

[[f]]

[[a,b,d],[a,b,e],[a,c,f]] Looking at the entire tree with a as root

[b, c]

[[b,d],[b,e]] [[c,f]]

map (recursive call)

flatten/concat

map (add a)

[[b,d],[b,e],[c,f]]

[[a,b,d],[a,b,e],[a,c,f]]

C03 Graph Traversal 20

Styles of Using DFS
● A more general pattern is an accumulator pattern.

a

b c

d e f

acc

acc_a

acc_ab

acc_abd

acc_ac

acc_acfacc_abe

(usually empty)

Accumulated value may be:
- Nodes visited
- Path from root so far
- All of above

You can mix accumulator and previous
“building bottom up” style by just passing
accumulator as argument during recursion

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C04 Hash FunctionsC04 Hash Functions

Hash functions
Choosing a good hash function

Hash functions
Choosing a good hash function

C04 Hash Functions 2

Hash Functions

A hash function is a function f that maps a key k, to a value f(k), within a

prescribed range. It maps arbitrary sized keys to fixed-sized hashes.

A hash is deterministic. (for a given key, k, f(k) will always be the same)

keys

hashes

dog cockatoo koala human….

0 1 2 3 4

C04 Hash Functions 3

Choosing a Good Hash Function

A good hash for a given population, P, of keys, k P∈ , will
distribute f(k) evenly within the prescribed range for the hash.

A perfect hash will give a unique f(k) for each k P∈ .

(Perfect hash is rarely possible:

 Pigeon hole principle.)

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/
TooManyPigeons.jpg/220px-TooManyPigeons.jpg

C04 Hash Functions 4

Why value determinism and even distribution?

● Lets reword how we stated determinism a bit:

– Given x, y, if x == y, then h(x) == h(y).

– It follows that (by contraposition):

● If h(x) != h(y), then x != y

● Even though we cannot give positive result (x is y) confidently,

– We can for the negative result (x is not y)

C04 Hash Functions 5

Why value determinism and even distribution?

● Now lets suppose h(x) gives an integer in range [0, 9]

● And suppose input is uniformly random

● With 10 values (or buckets), given inputs x and y, we have 90%
chance of deciding x != y in O(1)

● There is still a 10% chance of collision, but we have cut down
our average workload of later stage by 90%

– HashSet vs ArrayList

– More applications in C05

C04 Hash Functions 6

Why so many different hashes?

● We outlined the basic properties we look for in a hash

– Deterministic

● This is fundamental, and by definition of a mathematical function

● No exception to this requirement

– Even/uniform distribution of output

● This is not as indisputable – we don’t know what the distribution of input
is like

● But we try to obtain this by guessing what the “usual” input looks like,
e.g. statistical analysis of past usage

● The second point is roughly where the divergence begins

C04 Hash Functions 7

Why so many different hashes?

● For each input distribution, we would need a different hash function to
get an even distribution

Deterministic

Evenly distributed
output if input is

normally distributed

Evenly distributed
output if input is

evenly distributed

Evenly distributed
output if input is

bimodal

Deterministic Deterministic

C04 Hash Functions 8

Why so many different hashes?

● Even more variations if we want additional properties

DeterministicEvenly distributed
output if input is

normally distributed

Evenly distributed
output

DeterministicDeterministic

Fast on CPU

Low memory usage

Deterministic

Evenly distributed
output if input is

evenly distributed

Low memory usage

Secure

Evenly distributed
output

DeterministicDeterministic

Very slow

Very high memory
usage

C04 Hash Functions 9

Assume whatever distribution, pick a recipe

● From “Effective Java”, Josh Bloch

● (An approximate translation below in pseudo code)

● Assume you have fields (or more generally values) field0, field1, field2, …

● int result = 0; // accumulator
for (var field : fields) {
 var x = convertToInt(field); // recursively call this hash if needed
 result = 31 * result + x;
}

● How does this work? Suppose we have fields: x0, x1, x2

● After loop 0, result = x0

● After loop 1, result = 31 * x0 + x1

● After loop 2, result = 31 * (31 * x0 + x1) + x2 = 961 * x0 + 31 * x1 + x2

C04 Hash Functions 10

Intuition behind this pattern

● Why 961 * x0 + 31 * x1 + x2 (or similar)

● Each factor is used to disperse the field to a different band/partition of the output
range

● So it is sensitive to change of any field

x2

x1

x0

C04 Hash Functions 11

Why 31?

● From the book, multiplication with 31 is very efficient:

– 31 * x = (x << 5) - 1

● A more impactful answer (my guess) is we don’t use odd prime
very often. Suppose we use 100 instead of 31:

– 10000 * x0 + 100 * x1 + x2

● Suppose we reduce the range of hash by doing % 10, above
becomes

– x2

C04 Hash Functions 12

Why 31?

● Of course if we modulo 31, then we run into the same problem

● But not a super common number to use

– We see a lot of things using base 10, e.g. 10, 100, 1000

● Natural to human

– Or base 2, e.g. 1024, 2048, 4096

● Natural to machine

– Odd primes, less so. (We could have replaced 31 with 7 etc.)

C04 Hash Functions 13

Converting things into int

● Again mostly based on the recipe from Effective Java book

● Any numeric primitive type: multiply by prime, hashCode(), Float.floatToIntBits(x)

● Recursive: 31 * node.left.hashCode() + node.right.hashCode()

● Linear/array: treat each element as a field in previous recipe

C04 Hash Functions 14

More complex hash

● We can always mix and match, and use the recipe as the base
skeleton

● Suppose we parameterise the recipe as

– hash(int prime, List<int> fieldHashes)

● Examples:

– hash(31, fields in some order) // original reciple

– hash(31, fields in some order) + hash(7, fields in reverse order)

– Use a mix of primes: 67 * 31 * x0 + 31 * x1 + x2

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C05 Hashing Applications

Uses of hashing
Java hashCode()

C05 Hashing Applications 2

Uses of Hashing

● Hash table (implement a set or map)

● Checksums

– Error detection and/or correction

● Compression

– A hash is typically much more
compact than the key

● Pruning a search

– Looking for duplicates

● Cryptographic

C05 Hashing Applications 3

Practical Examples…

Luhn Algorithm
Used to check for transcription errors in

credit cards (last digit checksum).

Hamming Codes
Error correcting codes (as used

in EEC memory).

C05 Hashing Applications 4

Practical Examples…

rsync (Tridgell)
Synchronize files by (almost) only

moving the parts that are different.

MD5 (Rivest)
Previously used to encode

passwords (but no longer).

C05 Hashing Applications 5

Java hashCode()

Java provides a hash code for every object.

● 32-bit signed integer

● Inherited from Object, but may be overwritten

● Objects for which equals() is true must also have the same

hashCode().

● The hash need not be perfect (i.e. two different objects may
share the same hash).

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C06 Files

Java File IO
Streams
Standard IO
Buffering

C06 Files 2

What is a file?

A file is a collection of data on secondary storage (hard drive, USB
key, network file server).

Data in a file is a sequence of bytes (integer 0 ≤ b ≤ 255).

● The program reading a file must interpret the data (as text,
image, sound, etc).

● Standard libraries provide support for interpreting data as text.

C06 Files 3

I/O streams

A stream is a standard abstraction used for files:

● A sequence of values are read.

● A sequence of values are written.

The stream reflects the sequential nature of file IO and the physical
characteristics of the media on which files traditionally reside (e.g. tape
or a spinning disk).

Other I/O (e.g., network, keyboard) is also typically accessed as streams.

C06 Files 4

C06 Files 5

C06 Files 6

I/O in Java: Byte streams

The classes java.io.InputStream and java.io.OutputStream

allow reading and writing bytes to and from streams.

● Subclasses: FileInputStream and FileOutputStream for

files.

– Open the stream (create stream object)

– Read or write bytes from the stream

– Wrap operations in a try clause

– Use finally to close the streams

C06 Files 7

I/O in Java: Character streams

To read/write text files, use java.io.Reader and

java.io.Writer which convert between bytes and characters

according to a specified encoding.

● Subclasses: InputStreamReader and
OutputStreamWriter

● Subclasses FileReader and FileWriter (shortcuts for

wrapping a FileInputStream / FileOutputStream in a

InputStreamReader / OutputStreamWriter).

C06 Files 8

Text encoding

Each character is assigned a number.

Unicode defines a unique number (“code point”) for > 120,000
characters (space for > 1 million).

Bytes Code point Glyph

0100 0101 (69) 69

1110 0010 (226)
1000 0010 (130)
1010 1100 (172)

8364

Encoding (UTF-8) Font

C06 Files 9

Buffering I/O

In traditional storage media, accessing a specific byte (point in a file) is time
consuming:

Disk: ~2-10ms SSD: ~10-100μs RAM: ~100ns Cache: ~1-15ns

But reading a consecutive “block” at one time is not much more so. Hence,
buffering is used to absorb some of the overhead.

● BufferedReader and BufferedWriter can be wrapped around other

reader/writer (e.g., FileReader and FileWriter) to buffer I/O.

● To flush the buffer, call flush(), or close the file.

C06 Files 10

Terminal I/O

Three standard I/O streams:

• standard input: (usually typed) input to the program

• standard output: normal printed program output

• standard error: program error messages (not buffered)

• Available in Java as System.in, and System.out and System.err.

byte b = (byte) System.in.read();

System.out.write(b);

System.out.flush();

System.err.write(b);

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C07 Threads

Concurrency
Threads

C07 Threads 2

Concurrency, processes and threads

● Concurrency

– Multiple activities (appear to) occur simultaneously.

– ‘Time slicing’ allows a single execution unit to give the appearance of
concurrent execution.

● Process

– Distinct execution context that (by default) shares nothing.

● Thread

– Intra-process execution context.

– Multiple threads can (and do) execute the same methods on the same
objects.

C07 Threads 3

Why threads?

● ‘Concurrency’

– Separate concerns (e.g. rendering vs. logic)

– Good for: distinct tasks that naturally occur concurrently

● ‘Parallelism’ (a special case of concurrency)

– Break task into pieces, exploit parallel hardware

– Good for: computationally intensive problems that can be readily
partitioned

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Recursive Data Structure
	Recursive Algorithms
	Example: Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
	Slide 8
	Example: Mergesort (von Neumann, 1945)
	Slide 10
	Slide 11
	Slide 1
	Context
	(Computational) Scaling
	Big O Notation
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Concrete Examples (2)
	Concrete Examples (3)
	Simple Examples
	Slide 18
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 1
	Hash Functions (2)
	Choosing a Good Hash Function
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 1
	Uses of Hashing
	Practical Examples…
	Practical Examples… (2)
	Java hashCode()
	Slide 1
	File IO as Streams
	Slide 3
	Slide 4
	Slide 5
	Java I/O: Byte Streams
	Java I/O: Character Streams
	Slide 8
	File I/O: Buffering
	Java Command Line IO
	Slide 1
	Concurrency, Processes and Threads
	Why Threads?

