
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C01 RecursionC01 Recursion

Recursive data structures
Recursive algorithms
Recursive data structures
Recursive algorithms

C01 Recursion 5

Recursive Data Structures

A recursive data structure is comprised of components that
reference other components of the same type.

A B C D

Head

Linked list
Tree

A

B

C D E

F

G H

Root

C01 Recursion 6

Recursive Algorithms

A recursive algorithm reduces a computational problem to one or
more smaller instances of the same problem, and composes the
solution from their solutions.

A recursive algorithm is comprised of:
● Base case(s) that terminate the recursion
● Recursive call(s) that reduces towards the base case(s)

C01 Recursion 7

Example: Fibonacci Sequence

fib(0) = 0 (base case)

fib(1) = 1 (base case)

fib(n) = fib(n-1) + fib(n-2) (for n ≥ 2)

88

55

33
22

11 11

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377…

C01 Recursion 8

Example: Binary Search

Ordered list and a target value to find.

[1, 4, 5, 7, 9, 11, 15, 20, 25] find 11
[1, 4, 5, 7, 9, 11, 15, 20, 25] 9 > 11? right half
 [9, 11, 15, 20, 25] 15 > 11? left half
 [9, 11] 9 > 11? right half
 [11]

How does this compare to linear search?

What might the base case(s) be?

C01 Recursion 9

Sort a list
● List of size 1 (base case)

– Already sorted

● List of size > 1
– Split into two sub lists

– Sort each sub list (recursion)

– Merge the two sorted sub lists
into one sorted list (by iteratively
picking the lower of the two least
elements)

Example: Mergesort (von Neumann, 1945)

Animation: Visualizing Algorithms, Mike Bostock, bost.ocks.org/mike/algorithms

C01 Recursion 10

Recursion

● A recursive method (function) calls itself: this works because of
the call stack.

● A recursive method can always be rewritten into an iterative one
and vice-versa (consequence of Church-Turing thesis).

● When to use recursion vs when to use iteration (for and
while loops)?

– The problem at hand might be more naturally written and read in
one form (once you understand recursion!).

– Converting between approaches not always straightforward.

C01 Recursion 11

Recursion and Java

● Overhead of calling calling methods often higher than iterating
● Stack overflow on larger problems
● Compilers in many other languages perform tail-call elimination

for certain forms of recursion – Java doesn’t
● More functional languages (scheme, lisp, ocaml, haskell, f#,

scala) make recursion more convenient
● Situations where recursion is best are more limited in Java – but

important cases still exist!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Recursive Data Structure
	Recursive Algorithms
	Example: Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
	Slide 8
	Example: Mergesort (von Neumann, 1945)
	Slide 10
	Slide 11

