
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C03 Graph Traversal

Graphs and Trees
Traversal

C03 Graph Traversal 2

Graphs and Trees

● A powerful abstraction in computing.

A

B
C

D

Nodes: A B C D
Edges: (A, B) (B, C) (A, C) (C, A) (A, D)

Directed Graph

a

b c

d e f

Directed Rooted Tree

(connected acyclic directed graph)

With ordering of children: Ordered Tree

C03 Graph Traversal 3

Tree Features

a

b c

d e f

root

leaves

depth

0

1

2

b is the parent of d and e

d is a child of b

b has a branching factor (outdegree) of
2 (the number of children)

height

2

1

0

C03 Graph Traversal 4

Traversal

● Visiting the elements in a data structure:
– searching

– modifying

– reachability

– path finding

● Lists / arrays are a form of “linear data structure” that has a
natural sequence for traversal.

● Trees and Graphs can be traversed in many ways.

C03 Graph Traversal 5

Tree Traversal

● Special case of graph traversal.
● Two common forms:

– Depth-First Search (DFS)
● Explore as deep as possible along a branch until a leaf is

reached.
● Backtrack to another branch (e.g., sibling of leaf, or sibling of

parent, or …).

– Breadth-First Search (BFS)
● Starting at root, visit all nodes at given depth before going deeper.

C03 Graph Traversal 6

DFS and BFS

a

b c

d e f

a

b c

d e f

1

2

3 4

5

6

Pre-order DFS traversal
a b d e c f

1

2 3

4 5 6

BFS traversal
a b c d e f

C03 Graph Traversal 7

Implementing Tree Traversal

● Depth-First Search (DFS)

– Iteratively using a Stack: Last-In First-Out (LIFO) data structure

– Recursively by implicitly using the call stack

– Variations on ordering: post-order, pre-order, in-order

● Breadth-First Search (BFS)

– Iteratively using a Queue: First-In First-Out (FIFO) data structure

– Corecursively* by passing all sub-trees of same level

– Only one ordering

* Building (generating) data from a simple “base case”, rather than breaking down (reducing)
data until base case reached.

C03 Graph Traversal 8

Implementation DFS: Stack

a

b c

d e f

1

2

3 4

5

6

0 push a: [a]
1 pop: [] a
 push c: [c]
 push b: [c b]
2 pop: [c] b
 push e: [c e]
 push d: [c e d]
3 pop: [c e] d
4 pop: [c] e
5 pop: [] c
 push f: [f]
6 pop: [] f

Pre-order DFS traversal
a b d e c f

Stack []: push onto end, pop off end

DFS: pop node, push it’s children, repeat.

C03 Graph Traversal 9

Implementation BFS: Queue

a

b c

d e f

1

2 3

4 5 6

BFS traversal
a b c d e f

0 enq a: {a}
1 deq: {} a
 enq b: {b}
 enq c: {b c}
2 deq: {c} b
 enq d: {c d}
 enq e: {c d e}
3 deq: {d e} c
 enq f: {d e f}
4 deq: {e f} d
5 deq: {f} e
6 deq: {} f

Queue { }: enqueue onto back, dequeue off front

BFS: dequeue node, enqueue it’s children, repeat.

C03 Graph Traversal 10

Graph Traversal

● DFS and BFS generalise from tree traversal.
● Starting node selected based on problem.
● Additionally need to keep track of “visited” nodes to avoid

cycling.

B

A
C

E

F

D

1

2
3

45

6
B

A
C

E

F

D

1

2
4

63

5

C03 Graph Traversal 11

Example: Distance Between Nodes

● The distance between A and E is the number of edges on a shortest path
between the two nodes.

● BFS can naturally track the distance.

● DFS might visit E via a non-shortest path – need to revisit nodes

B

A
C

E

F

D

1

2
3

45

6
B

A
C

E

F

D

1

2
4

63

5

C03 Graph Traversal 12

Styles of Using DFS

● Using DFS as skeleton for our code, i.e. we only really care
about the traversal pattern.

a

b c

d e f

1

2

3 4

5

6

DFS Emit/write some data at
each step

Stdout

HashSet

ArrayList

Database

a

b

d

...

C03 Graph Traversal 13

Styles of Using DFS

● Height/longest path calculation using a single counter

a

b c

d e f

1

2

3 4

5

6

DFS a

b

d

d

Action Current Best

0 0

+1 1 0

+1 2 0

+1, update best 3 3

-1 (undo) 2 3

jump to next child 2 3

+1, update best 3 3

-1 (undo) 2 3

e

Problem: Not all data structures have a clear notion of “undo”,
e.g. set

e

b

C03 Graph Traversal 14

Styles of Using DFS

● Height/longest path calculation using record of history

a

b c

d e f

1

2

3 4

5

6

DFS

a

b

d

b

Current Action Lengths/history

1 []

2 []

3 Record cur [3]

2 [3]

3 Record cur [3, 3]e

C03 Graph Traversal 15

Styles of Using DFS

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

DFS [
 [a, b, d],
 [a, b, e],
 [a, c, f],
]

Array of paths

Filter

Statistics

...

C03 Graph Traversal 16

Building the data bottom up

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

[[d]] [[e]]

[[b,d], [b,e]] [[c,f]]

[[f]]

[[a,b,d],[a,b,e],[a,c,f]] “Concatenation” here is in some sense “combine and flatten”

 [[x0,x1,…]] + [[y0,y1…]]

- combine →
 (combining directly adds one layer of container,
 i.e. we have container of containers of containers)

 [[[x0,x1,…], [y0,y1,…]]]

- flatten →
 (flattening removes that extraneous layer,
 so we get “container of containers” back)

 [[x0,x1,…],[y0,y1,...]]

C03 Graph Traversal 17

Building the data bottom up with flat map

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

[[d]] [[e]]

[[b,d], [b,e]] [[c,f]]

[[f]]

[[a,b,d],[a,b,e],[a,c,f]] “Flat map” (or “concat map”) is then an extension of that idea

[x, y, z]

[x0,x1,x2] [y0] [z0,z1,z2,z3]

map

flatten/concat

[x0, x1, x2, y0, z0, z1, z2, z3]

C03 Graph Traversal 18

Building the data bottom up with flat map

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

[[d]] [[e]]

[[b,d], [b,e]] [[c,f]]

[[f]]

[[a,b,d],[a,b,e],[a,c,f]] Looking at the bottom left subtree with b as root

[d, e]

[[d]] [[e]]

map (recursive call)

flatten/concat

map (add b)

[[d],[e]]

[[b,d],[b,e]]

C03 Graph Traversal 19

Building the data bottom up with flat map

● Using DFS to produce well structured data to pass to next stage
in a self contained way.

a

b c

d e f

[[d]] [[e]]

[[b,d], [b,e]] [[c,f]]

[[f]]

[[a,b,d],[a,b,e],[a,c,f]] Looking at the entire tree with a as root

[b, c]

[[b,d],[b,e]] [[c,f]]

map (recursive call)

flatten/concat

map (add a)

[[b,d],[b,e],[c,f]]

[[a,b,d],[a,b,e],[a,c,f]]

C03 Graph Traversal 20

Styles of Using DFS
● A more general pattern is an accumulator pattern.

a

b c

d e f

acc

acc_a

acc_ab

acc_abd

acc_ac

acc_acfacc_abe

(usually empty)

Accumulated value may be:
- Nodes visited
- Path from root so far
- All of above

You can mix accumulator and previous
“building bottom up” style by just passing
accumulator as argument during recursion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

