

Graphs and Trees

* A powerful abstraction in computing. e

Directed Graph

Nodes: ABC D
Edges: (A,B) (B, C) (A, C) (C,A) (A, D)

Directed Rooted Tree

(connected acyclic directed graph)

With ordering of children: Ordered Tree

/\;
—

CO03 Graph Traversal

—

———
>

Tree Features

root '
“~ idepth Thelght

ONNNLEN
b is the parent of d and e

d is a child of b G e 1 1

b has a branching factor (outdegree) of

2 (the number of children)
(@D () (O 2 o
. o T

leaves

..

CO03 Graph Traversal 3

* Visiting the elements in a data structure:
— searching
- modifying
— reachability
— path finding

* Lists/ arrays are a form of “linear data structure” that has a
natural sequence for traversal.

* Trees and Graphs can be traversed in many ways.

* Special case of graph traversal.
 Two common forms:

- Depth-First Search (DFS)

* Explore as deep as possible along a branch until a leaf is
reached.

* Backtrack to another branch (e.g., sibling of leaf, or sibling of
parent, or ...).

- Breadth-First Search (BFS)
e Starting at root, visit all nodes at given depth before going deeper.

DFS and BFS

Pre-order DFS traversal
abdecf

BFS traversal
abcdef

CO03 Graph Traversal

Implementing Tree Traversal

* Depth-First Search (DFS)
- Iteratively using a Stack: Last-In First-Out (LIFO) data structure
- Recursively by implicitly using the call stack
— Variations on ordering: post-order, pre-order, in-order

* Breadth-First Search (BFS)
- lteratively using a Queue: First-In First-Out (FIFO) data structure
— Corecursively* by passing all sub-trees of same level
— Only one ordering

* Building (generating) data from a simple “base case”, rather than breaking down (reducing)
data until base case reached.

CO03 Graph Traversal 7

Implementation DFS: Stack

Stack []: push onto end, pop off end

DFS: pop node, push it’s children, repeat.

@ push a: [a]
1

pop: [] a
push c: [c]
push b: [c b]
2 pop: [c] b
6 push e: [c e]
push d: [c e d]
3 pop: [c e] d
Pre-order DFS traversal g ngf H] ©
abdect push f: [f]
6 pop: [] f

CO03 Graph Traversal

..

Implementation BFS: Queue

Queue { }: enqueue onto back, dequeue off front

BFS: dequeue node, enqueue it’s children, repeat.

O enq a: {a}
1 deq: {} a
enqg b: {b}
enqg c: {b c}
2 deq: {c} b
enq d: {c d}
enqg e: {c d e}
3 deq: {d e} C
BFS traversal . ggg . f: Eg ?}f} g
abcdef 5 deq: (£ o
6 deq: {} f

..

CO03 Graph Traversal 9

Graph Traversal

* DFS and BFS generalise from tree traversal.
« Starting node selected based on problem.

* Additionally need to keep track of “visited” nodes to avoid
cycling.

CO03 Graph Traversal

Example: Distance Between Nodes

 The distance between A and E is the number of edges on a shortest path
between the two nodes.

 BFS can naturally track the distance.

* DFS might visit E via a non-shortest path — need to revisit nodes

CO03 Graph Traversal

Styles of Using DFS

* Using DFS as skeleton for our code, i.e. we only really care

about the traversal pattern.

Emit/write some data at

each step HashSet
a » | Stdout
b >
d > ArrayList
Database

CO03 Graph Traversal

12

Styles of Using DFS

* Height/longest path calculation using a single counter
Action Current |Best

a —p [+1

b —» [+1

d —» |+1, update best
d — |-1 (undo)

b — |jump to next child

e —» |+1, update best
e —» |-1 (undo) 2

WININWIN PF| O

WWw w w o o|o

Problem: Not all data structures have a clear notion of “undo”,

'w"“
=

e.g. set

CO03 Graph Traversal 13

Styles of Using DFS

* Height/longest path calculation using record of history

Current Action Lengths/history
1 []

2 []

3 Record cur [3]

2 [3]

3 Record cur [3, 3]

CO03 Graph Traversal

’ii))-ﬂ:-

14

Styles of Using DFS

* Using DFS to produce well structured data to pass to next stage
In a self contained way.

Array of paths
DFS [» Filter
@ [a, b, d],
[a, b, e], l
G G — [a, ¢, £1, Statistics

v

..

CO03 Graph Traversal 15

Building the data bottom up

* Using DFS to produce well structured data to pass to next stage
In a self contained way.

“Concatenation” here is in some sense “combine and flatten”

[[a,b,d],[a,b,e],[a,c,f]]

[[x0,x1,..]] + [[y0O,yl.]]

- combine -
(combining directly adds one layer of container,
1.e. we have container of containers of containers)

[[[x0,x1,.], [y0,yl,.]]]

- flatten -
(flattening removes that extraneous layer,
so we get “container of containers” back)

C03 Graph Traversal [[x0,x1,..],[y0,yl,...]] 16

Building the data bottom up with flat map

* Using DFS to produce well structured data to pass to next stage
In a self contained way.

[[a,b,d],[a,b,e],[a,c.f]] “Flat map” (or “concat map”) is then an extension of that idea

[x, vy, z]

e e

[x0,x1,x2] [yO] [z0,21,22,23]

¢ ¢ ¢ flatten/concat

[x0, x1, x2, y0, z0, z1, z2, z3]

CO03 Graph Traversal 17

Building the data bottom up with flat map

* Using DFS to produce well structured data to pass to next stage
In a self contained way.

[[a,b,d],[a,b,e],[a,c,f]] Looking at the bottom left subtree with b as root

[d, el

‘ \ map (recursive call)

[[d]] [lell

¢ ¢ flatten/concat

[[d], [e]]
¢ map (add b)

[[b,d],[b,e]]
CO03 Graph Traversal 18 =

Building the data bottom up with flat map

* Using DFS to produce well structured data to pass to next stage
In a self contained way.

[[a,b,d],[a,b,e],[a,c,f]] Looking at the entire tree with a as root

[b, cl

/ \ map (recursive call)

[[b,d],[b,e]] [[c,T]]

\ / flatten/concat

[[b,d],[b,e],[c,f]]
¢ map (add a)

[[arbrd]r[arbre]r[arcrf]]
CO03 Graph Traversal 19 =

Styles of Using DFS

A more general pattern is an accumulator pattern.

(usually empty)

acc_abd || acc_abe

acc_acf

Accumulated value may be:
- Nodes visited

- Path from root so far

- All of above

You can mix accumulator and previous
“building bottom up” style by just passing
accumulator as argument during recursion

CO03 Graph Traversal

20

..

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

