
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J01 Introductory Java 1J01 Introductory Java 1

Imperative programming languages
Java standard library
Types
Hello world

Imperative programming languages
Java standard library
Types
Hello world

J01 Introductory Java 1 3

Why Java?

● Learn multiple programming paradigms

● Important example of:

– Object-oriented programming

– Large scale programming

– Programming with a rich standard library

J01 Introductory Java 1 4

Programming Paradigms

Declarative

Functional

Logic
Programming

Imperative

Procedural

Object-
Oriented

Pure functional
programming only
transforms state using
functions without side
effects.

Object-oriented
programming tightly
groups the procedures
and data structures
together into “objects”

Imperative programming
describes computation in terms
of a series of commands that
transform state.

Procedural programming
uses procedures to
transform data structures

Declarative programming
describes the desired result
without explicitly listing steps
required to achieve that goal.

J01 Introductory Java 1 5

Structured Programming

Another paradigm that imposes a logical structure to code making it easier to
understand and less error prone.

● Structured control flow (e.g., no GOTOs)

● Callable units (functions / methods / procedures)

● Block structure and scoping

“Structured program theorem” gives three building blocks:

● Sequence

● Selection

● Iteration

J01 Introductory Java 1 6

Type Systems

The type of a unit of data determines the
possible values that data may take on, and the
ways it may be operated on.

Ensuring the constraints on types are obeyed is
type checking:

● Static type checking: done at compile time

– Java / Haskell / C
● Dynamic type checking: done at runtime

– Python / LISP / Javascript

00110001 ?

25+24+20 = 49 ?

ASCII Char ‘1’ ?

X86 Opcode XOR ?

R of RGB value ?

J01 Introductory Java 1 7

Syntax and Semantics

● Syntax: the ways characters can be structured to create a valid
program in the given language

– 3 + 5: a valid expression involving a number, a binary operator, and
then another number

– Fair warning: You will see some syntax that has not yet been
explained, especially in the first weeks.

● Semantics (meaning / behaviour): what that syntax represents /
how the program will behave

– 3 + 5: evaluates to a new integer (8) that is the sum of the two
integer operands (informally)

J01 Introductory Java 1 8

Abstraction

● Controlling complexity.

● Forming modules / components
that hide unimportant details and
provide an intuitive interface to
other components.

● Enabling more of the system to fit in
our limited fleshy brains at once,
without losing the key interactions.

● Generalising capability.

● Critical in all languages / paradigms.

Rolls Royce Trent XWB for the A350. Photo: AINonline

J01 Introductory Java 1 9

The Java Standard Library

● The Java language is augmented with a large standard library

(like libstdc++ for C++, .NET for C#, and many others)

– I/O (accessing files, network, etc)

– Standard data structures

– Graphics

– And much more

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

● Learning to use the standard library is part of learning a major language, such
as Java.

● Rich and well-designed standard libraries are a key software engineering tool.

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

J01 Introductory Java 1 10

This course follows the structure of the Oracle Java Tutorials for
the basic introduction to Java.

https://docs.oracle.com/javase/tutorial/

The tutorials are subject to Oracle’s ‘Java Tutorial Copyright and License’
(Berkeley license).

We will move very fast for the first few weeks. Use the tutorials to
ensure that you rapidly become proficient in the basics of Java.

The Oracle Java Tutorials

https://docs.oracle.com/javase/tutorial/

J01 Introductory Java 1 11

The Waterloo Java Visualiser

Type in simple Java programs and
watch step-by-step execution. A
great way to enhance your
understanding of a new language.

https://cscircles.cemc.uwaterloo.ca/java_visualize/

https://cscircles.cemc.uwaterloo.ca/java_visualize/

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J02 Introductory Java 2J02 Introductory Java 2

Objects
Classes
Inheritance

Objects
Classes
Inheritance

J02 Introductory Java 2 2

Objects

Java is an object-oriented language.

Objects combine state and behaviour

● State: fields (data)

– data can be constant (unchanging through the existence of the
object), or changing/variable

● Behaviour: methods (code)

J02 Introductory Java 2 3

A class is a blueprint or ‘type’ for an object

● Class: definition used for multiple instances (objects)

– The class defines what fields and methods each instance of it
has; methods are shared by all instances.

– A class can also have fields, that are shared by all instances.

● Instance (object): one instantiation of a class

– Each instance has its own concrete values for (non-class) fields.

Classes

J02 Introductory Java 2 4

Methods

● A subroutine/function/procedure

– Reusable code to perform a specific task

– Abstraction: modularity, encapsulation

● In Java, almost all code is a method (main, if not another).

● Methods may take arguments (parameters).

● Methods may return a value.

J02 Introductory Java 2 5

The puzzle consists of nine tiles,
arranged in a 3x3 grid. Each tile has
one pattern, a snake head or tail of
a given colour, on each side. The
goal of the game is to place and
rotate the tiles so that the patterns
match at every edge.

J02 Introductory Java 2 6

● class Tile:

– Fields: one Pattern for each side, current rotation

– Methods: rotate

– Instances: ...

● class Grid:

– Fields: tile in each grid position

– Methods: move (swap) tiles, check if edges match

J02 Introductory Java 2 7

Inheritance

Classes form a hierarchy

● a sub-class extends a super-class

● a child-class extends a parent-class

Object

Class java.lang.Object is the root

(ultimate ancestor) class of all Java
Classes

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J03 Introductory Java 3J03 Introductory Java 3

Naming
Types
Literals

Naming
Types
Literals

J03 Introductory Java 3 2

Java Naming

● Java names:

– Alphanumeric characters and underscores, must not start with a digit.

– Keywords and reserved words cannot be used.

– Case-sensitive.

● Capitalisation conventions

– Class names start with capital letters (Bike)

– Variable/field and method names start with lower case, and use upper
case for subsequent words (currentGear)

– Constant names use all caps and underscores (MAX_GEAR_RATIO)

J03 Introductory Java 3 3

Java Packages

Every name used in a program must be
unambiguous.

A namespace is a part of the code within which
names are unique

In Java, a package (among other things) defines a

namespace.

For example,

comp1110.snake.Tile

comp1110.ass1.Tile

Mary Who?

J03 Introductory Java 3 4

Java Variables

● Instance (non-static fields, object-local)

– Each object has its own version (instance) of the field

● Class (static fields, global)

– Exactly one version of the field exists

● Local

– Temporary state, limited to execution scope of code

● Parameters

– Variables local to a method, given values by method’s caller

J03 Introductory Java 3 5

Java’s Primitive Data Types

type Description Range Default

byte 8-bit signed 2’s complement integer -128 - 127 0

short 16-bit signed 2’s complement integer -32768 - 32767 0

int 32-bit signed 2’s complement integer -231 - 231-1 0

long 64-bit signed 2’s complement integer -263 - 263-1 0L

float single precision 32-bit IEEE 754 floating point number 0.0f

double double precision 64-bit IEEE 754 floating point number 0.0d

boolean logically just a single bit: true or false true, false false

char 16-bit Unicode character 0 - 65535 0

In addition to objects, Java has 8 built-in ‘primitive’ data types.

J03 Introductory Java 3 6

Java Literals
● Integer literals (e.g., 1) default to type int.

– An integer value is a long if it ends with ‘l’ or ‘L’

– The prefix 0x indicates hexadecimal, 0b is binary, 0 octal:

● 0x30 // 48 expressed in hex

● 0b110000 // 48 expressed in binary

● 060 // 48 expressed in octal

– Underscores can be used to break up numbers:

● long creditCardNumber = 1234_5678_9012_3456L;

● A decimal value ending in ‘f’ is a float, while ‘d’ indicates double (default).

● Text in “double quotes” is a String.

● A single character in single quotes (e.g., ‘A’) is a char.

J03 Introductory Java 3 7

Java Arrays

Arrays hold a fixed number of values of a given type (or sub-type) that can be
accessed by an index.

● Declaring:
int[] values;

● Initializing:
values = new int[8]; // 8 element array, all zeros
values = new int[]{1, 2, 3, 4}; // with specific values

● Accessing:
int x = values[3]; // the 4th element

● Copying:
System.arraycopy(x, 0, y, 0, 8);

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J04 Introductory Java 4J04 Introductory Java 4

Expressions
Operators
Statements
Methods

Expressions
Operators
Statements
Methods

J04 Introductory Java 4 2

Expressions

● A construct that evaluates to a single value.

● Made up of

– variables

– literals

– operators

– method invocations

● Compound expressions follow precedence rules

– Use parentheses (clarity, disambiguation)

J04 Introductory Java 4 3

Java Operators

● Assignment (=)

● Arithmetic (+ - * / % += -= *= /= %=)

● Unary (+ - ++ -- !)

● Equality (== !=), relational (> >= < <=), logical (&& ||) and
instanceof

● Bitwise (~ & ^ | << >> >>>)

● Object creation (new)

J04 Introductory Java 4 4

Statements

● A complete unit of execution.

● Expression statements (expressions made into statements by
terminating with ‘;’):

– Assignment expressions

– Use of ++ or --

– Method call

– Object creation expressions

● Declaration statements

● Control flow statements

J04 Introductory Java 4 5

Block

● Zero or more statements between balanced braces (‘{’ and ‘}’)

● Can be used anywhere a single statement can

J04 Introductory Java 4 6

Methods

● A function/procedure/subroutine

– Reusable code to perform a specific task

– Abstraction: modularity, encapsulation

● In Java, almost all code is in a method (main, if not another).

● Methods may take arguments (parameters).

● Methods may return a value.

J04 Introductory Java 4 7

Method Declaration

A method declaration consists of the following, in order:

● any modifiers (public, private, etc)

● return type

● method name

● parameters, in parentheses

● (any exceptions the method may throw)

● the method body (code), a block

public byte[] getBytes(String charsetName) {

 …

}

J04 Introductory Java 4 8

Parameters (method arguments)

Parameters are the mechanism for passing information from one
method to another method (or constructor).

When a method is called, it must be given a list of argument
expressions that match the number and types of the method’s
parameters.

byte[] bytes = myString.getBytes(“UTF-8”);

(The semantics of parameter passing are not so simple, and we will come
back to them in a later lecture.)

J04 Introductory Java 4 9

Returning a Value from a Method

The return statement exits the current method.

Methods return to caller when:

● all statements in method executed, or

● a return statement is reached, or

● the method throws an exception (more in a later lecture)

Methods declared void do not return a value.

All other methods must return a value of the declared type
(or a subclass of the declared type, described later).

J04 Introductory Java 4 10

Class and Instance methods

A method declared with the static modifier is a class method

(otherwise it is an instance method).

● Class methods

– Can be called without reference to an object

– But may use class fields only.

● Instance methods

– Must be called on an object (anObject.aMethod(...))

– May use both class and instance fields.

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J05 Control FlowJ05 Control Flow

Control flow
if-then-else
switch

Control flow
if-then-else
switch

J05 Control Flow 1 2

Control Flow

Control flow statements allow the execution of the program to
deviate from a strictly sequential execution of statements
(‘selection’).

Structured programming: sequence, selection, iteration.

J05 Control Flow 1 3

if-then & if-then-else statements

● The if-then construct conditionally executes a block of code.

● The if-then-else construct conditionally executes one of two

blocks of code.

J05 Control Flow 1 4

The switch statement

● The switch statement selects one path among many.

● Execution jumps to the first matching case.

● Execution continues to the end of the switch unless a break

statement is issued.

J05 Control Flow 1 5

The switch expression

● The switch expression selects one value among many.

● Execution jumps to the first matching case.

● The value of the expression is given by the yield operator in

the matching case.

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J06 Control Flow 2J06 Control Flow 2

while and do-while
for
break, continue, return

while and do-while
for
break, continue, return

J06 Control Flow 2 2

The while and do-while statements

● The while statement continuously executes a block while a

condition is true.

● The do-while construct evaluates the condition at the end of

the block rather than at the start.

Structured programming: sequence, selection, iteration.

J06 Control Flow 2 3

The for statement

● A compact way to iterate over a set of values.

● The statement has three logical parts:

– Initialization

– Continuation condition

– Increment statement

● The ‘enhanced’ for statement infers the initialization, termination
and increment statements, given an array or collection

J06 Control Flow 2 4

Branching statements within a loop

● The break statement terminates a loop construct

– Unlabelled terminates the inner-most loop

– Labelled terminates the loop named by the label

● The continue statement skips the current iteration of a loop

– Unlabelled skips the current iteration of the inner-most loop

– Labelled skips the current iteration of the loop named by the label

● The return statement exits the current method

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J07 MethodsJ07 Methods

Methods
Stack, Parameters and References
Exceptions

Methods
Stack, Parameters and References
Exceptions

J07 Methods 2

Methods

● A function/procedure/subroutine

– Reusable code to perform a specific task

– Abstraction: modularity, encapsulation

● In Java, almost all code is in a method (main, if not another).

● Methods may take arguments (parameters).

● Methods may return a value.

J07 Methods 3

Method Declaration

Method declarations will have the following, in order:

● Any modifiers (public, private, static, etc.)

● return type

● method name

● parameters, in parentheses

● Any exceptions the method may throw

● The method body (code)
public byte[] getBytes(String charsetName)

 throws UnsupportedEncodingException {

 …

}

J07 Methods 4

Returning a Value from a Method

The return statement exits the current method.

Methods return to caller when:

● all statements in method executed, or

● a return statement is reached, or

● the method throws an exception (later)

Methods declared void do not return a value.

All other methods must return a value of the declared type
(or a subclass of the declared type, described later).

J07 Methods 5

Parameters and arguments

When a method is called, it must be given a list of argument
expressions that match the number and types of the method’s
parameters.

Argument expressions are evaluated before the method is called
(left-to-right) and their values passed as arguments.

byte[] bytes = myString.getBytes(“UTF-8”);

J07 Methods 6

The Call Stack: Method after Method after…

● Call Stack: a data structure that tracks method calls

– Not directly interacted with in high-level languages like Java

– Each call to a method pushes a stack frame to the stack with*:

* Not specific to Java, the details depend on the language,
compiler, instruction set, operating system etc...

● Return address: where to continue in the
calling method after called method finishes

● The parameters to pass the called method

● Space to store local variables for called
method

By Ch. Maderthoner - Own work, CC0,https://commons.wikimedia.org/w/index.php?curid=37987842

https://commons.wikimedia.org/w/index.php?curid=37987842

J07 Methods 7

The Call Stack

static int twice(int z) {
 return 2 * z;
}

static int process(int y) {
 y = twice(y);
 y = y + 1;
 return y;
}

static int number() {
 int x = 11;
 return process(x);
}

Local variable x
Return address

Parameter y
Return address

Parameter z
Return address

...

J07 Methods 8

Parameters

● Primitive types passed by value (copied into stack frame)

– Changes to parameter are not seen by caller

● References passed by value (copied into stack frame)

– Changes to the reference are not seen by caller

– Changes* to object referred to are seen by caller

* Some types (e.g., String) are designed to be immutable – no public
methods modify any class or instance fields.

J07 Methods 9

Parameter Passing
static void method(int x,
 String name,
 int[] array) {
 x = 100;
 name = "Greg";
 array[2] = 1000;
 array = new int[]{10, 11};
}

public static void main(…) {
int xCaller = 5;
String nameCaller = "Barbara"
int[] arrayCaller = new int[] {1, 2, 3};
method(xCaller, nameCaller, arrayCaller);

}

xCaller := 5
nameCaller := #ref1
arrayCaller := #ref2

x := 5
name := #ref1
array := #ref2

#ref1 “Barbara”

#ref2

#ref3 “Greg”

#ref4 {10, 11}

:= #ref3
:= #ref4 ({1, 2, 1000})

Stack Heap

{1, 2, 3}

:= 100

J07 Methods 10

Exceptions Basics

● A method can either execute normally and return a value
(passing execution back to caller), or throw an exception to
signal something went wrong.

● When an exception is thrown, exception control flow kicks in:
unwinds the call stack until either a method further down the
stack “handles” the exception, or the process exits.

● We will revisit the types of exception and how to catch them
later on. For now you will just likely want exceptions to crash
your program so it is obvious something went wrong.

J07 Methods 11

Class and Instance methods

A method declared with the static modifier is a class method

(otherwise it is an instance method).

● Class methods

– The method called is determined statically from the class of the
referring variable/expression.

● Instance methods

– The method called is determined dynamically from the class of
the value (object) that the method is called on.

● Same with static fields.

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J08 Nested ClassesJ08 Nested Classes

Nested classesNested classes

J08 Nested Classes 2

Nested Classes

A class may be defined within another class. Such a class is called
a nested class. The main motivation for nested classes is to
improve encapsulation and clarity.

● Static nested classes (use static keyword) behave as if

declared elsewhere, but happen to be packaged together in a
single file, cannot refer directly to instance fields of parent

● Inner classes (non-static) has direct access to the instance
fields and members of its enclosing class.

J08 Nested Classes 3

Anonymous Inner Classes

An instance of an inner class implementing a specified interface
can be created without defining the inner class:

comp = new Comparable<String>() {

 Public int compareTo(String other) { … };

};

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J09 Lambda ExpressionsJ09 Lambda Expressions

Lambda expressionsLambda expressions

J09 Lambda Expressions 2

Functional Interfaces

A functional interface is an interface which only defines a single
method.

Commonly-used functional interfaces are defined in package
java.util.function, e.g.:

public interface IntPredicate {
 boolean test(int value);
}

public interface DoubleSupplier {
 double getAsDouble();
}

J09 Lambda Expressions 3

Lambda Expressions

Lambda expressions in Java are a shorthand for creating
anonymous inner classes that implement functional interfaces.

● Syntax

– Comma-separated formal parameters (x)

– Arrow (->)

– Body (either single expression or statement block, which may
contain return)

 x -> x > 100 or x -> { … return true; }

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J10 Number and AutoboxingJ10 Number and Autoboxing

Number, Integer, Short, Float, etc.
Autoboxing
Math

Number, Integer, Short, Float, etc.
Autoboxing
Math

J10 Number and Autoboxing 2

The Number Classes

Normally you will represent numbers with the primitive types int, short,

float, etc. Java includes ‘boxed’ object analogues to each of these: Integer,

Short, Float, etc.

● Number classes have methods (primitives don’t)

– toString(), parseInt(), etc.

● Number classes have constants

– Integer.MIN_VALUE, Short.MAX_VALUE, etc

● Number classes are subclasses of Object.

● Number classes have a space overhead

– They are instantiated as true objects

J10 Number and Autoboxing 3

Autoboxing

Classes such as Integer and Character are boxed versions of

the primitive types int and char (primatives wrapped in an

object). Java offers automatic support (syntactic sugar) for boxing
and unboxing (wrapping / unwrapping).

● Boxing an int literal: Integer i = 5;

● Unboxing to an int variable: int j = i;

J10 Number and Autoboxing 4

The Math class contains methods and constants useful for basic

mathematics:

● Constants: Math.PI, Math.E

● Trigonometry: sin(), cos(), etc.

● Rounding: abs(), ceil(), floor(), etc.

● Comparison functions: max(), min()

● Exponentials and logs: exp(), log(), pow(), etc.

● Random number generation: random()

The Math class

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J11 Character and String

Character and String

J11 Character and String 2

The Character Class

The Character class boxes char, just as Integer boxes int. It

contains methods and constants useful for manipulating
characters:

● Property methods: isLetter(), isDigit(), etc.

● Conversion: toString() (a single character string!)

Escape sequences are used to represent characters that have a
special meaning in Java syntax:

● \' , \" , \\, \n, etc.

J11 Character and String 3

The String Class

The String class is provided by Java to store and manipulate strings (by

contrast, in C, a string is simply an array of characters).

● Implicit creation from literal:

String x = "foo";

● Concatenation with “+”:

String y = x + "bar";

● StringBuilder class

J11 Character and String 4

Operations on Strings

● Strings are immutable: no operations modify original String

● Get length (number of characters):

if (x.length() > 3) …

● Get a character with charAt()

● Get a substring with substring()

● Others: split(), trim(), toLowerCase(), etc.

● Finding: indexOf(), contains(), etc.

● Replacing: replace(), replaceAll(), etc.

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J12 GenericsJ12 Generics

GenericsGenerics

J12 Generics 2

Generics

Sometimes it is useful to parameterize a class with a type, T.

Rather than IntContainer, LongContainer, etc. we can just

write Container<T>, and then create instances of types such as

Container<Integer>.

We can also create generic methods that accept type parameters:
 static <T> void acceptSomeValue(T value) { … }

Prior to the introduction of Java generics, programmers often used
Object as a work-around as it can refer to any non-primitive type.

J12 Generics 3

Type Parameters

● By default, the only thing that is assumed about a type parameter T is that it is an

object: i.e. it extends Object.

– No primitives can be used as a generic type (big part of the reason for boxing primitives)

– When working with a variable that has a generic type, all we can do is pass it around and
call methods that are defined for Object.

● Bounds can be put on type parameters to make them “less generic”.

– E.g., public <T extends Number & MyInterface> void method(T t) {…}

– This restricts the types that can be used with the generic.

– This increases the assumptions that can be made about a variable of this generic type.

● Limits on generic method overloading (type erasure).

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J13 Type InferenceJ13 Type Inference

Generic type inference
Lambda expressions
Local variables

Generic type inference
Lambda expressions
Local variables

J13 Type Inference 2

Type Inference

The Java compiler can infer many types from context, cutting down on
boilerplate code, and simplifying refactoring.

Instantiating generic classes:

LinkedList<String> list = new LinkedList();

Generic methods:

public <T> void add(T value) { }

list.add("A String");

J13 Type Inference 3

Local Variables

With the var keyword, Java can infer the type of a local variable

from its initialization expression.

The most specific type is inferred.

var theAnswer = 42;

var bike = new Bike();

var mystery; // invalid – no initializer

var nothing = null; // invalid – too vague

J13 Type Inference 4

Lambda Expressions

Types of parameters to lambda expressions:

Predicate<String> nonEmpty = x -> x.length() > 0;

However, can’t infer the type of a lambda expression as a local variable:

var lambda = x -> x + 1; // invalid – what type is x?

var lambda = (int x) -> x + 1; // invalid – what is lambda?

IntFunction<Integer> lambda = x -> x + 1; // OK

Passing a lambda expression directly to a method normally works, as the method
parameter provides the type information.

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J14 CollectionsJ14 Collections

The collections framework
Common collection types
Iterator and Stream interfaces
Ordering collections

The collections framework
Common collection types
Iterator and Stream interfaces
Ordering collections

J14 Collections 2

The Collections Framework
(in java.util)

● Interfaces

– Implementation-agnostic interfaces for collections

● Implementations

– Concrete implementations

● Algorithms

– Searching, sorting, etc.

Using the framework saves writing your own: better performance, fewer
bugs, less work, etc.

J14 Collections 3

The Collection Interface

● Basic operators

– size(), isEmpty(), contains(), add(), remove()

● Traversal

– Iterators (abbreviated for loop syntax), forEach().

● Bulk operators

– containsAll(), addAll(), removeAll(), retainAll(), clear()

● Array operators

– convert to and from arrays

J14 Collections 4

Collection Types

● Primary collection types:

– Set (no duplicates, mathematical set)

– List (ordered elements)

– Queue (ordered sequence with restrictions)

– Map (<key, value> pairs)

● Each collection type is defined as an interface

– You need to choose a concrete class to instantiate

– Your choice will depend on your needs

J14 Collections 5

Concrete Collection Types

Implemented Using

Interfaces Hash table Resizable
array

Tree Linked list Hash table +
linked list

Set HashSet TreeSet LinkedHashSet

List ArrayList LinkedList

Queue ArrayDeque LinkedList

Map HashMap TreeMap LinkedHashMap

Based on table from http://docs.oracle.com/javase/tutorial/collections/implementations/index.html

J14 Collections 6

Four Commonly Used Collection Types

● HashSet implements a set as a hash table

– Makes no ordering guarantees

● ArrayList implements a list using an array

– Very fast access

● HashMap implements a map using a hash table

– Makes no ordering guarantees

● LinkedList implements a queue or list using a linked list

– First-in-first-out (FIFO) queue ordering

J14 Collections 7

Iterable<T> interface

Collections implement the Iterable<T> interface, which enables

use of the “For-Each loop”:

for (var t : things) {

 System.out.println(t);

}

and also a forEach method to apply lambda expression:

things.forEach(t -> System.out.println(t));

J14 Collections 8

Stream<T> Interface

Collections can accessed as a stream via the stream() method, enabling a more functional

programming style:

 List<Integer> list = List.of(1, 2, 3, 4, 5); // immutable list!

 var count = list.stream()

 .filter(x -> x > 2)

 .count();

 var nList = list.stream()

 .filter(x -> x > 2)

 .map(x -> Integer.toString(x + 2))

 .toList(); // immutable, otherwise collect(...)

J14 Collections 9

Ordering Collections

The Comparable interface defines a ‘natural’ ordering for all instances of a given type, T:

 public interface Comparable<T> {

 int compareTo(T o);

 }

The return value is either negative, 0, or positive depending if the receiver comes before,
equal, or after the argument, o.

The Comparator functional interface allows a type T to be ordered in ad-hoc ways:

 public interface Comparator<T> {

 int compare(T o1, T o2);

 }

J14 Collections 10

java.util.Collections

Some useful static methods for collections:

● sort, min, max, reverse, frequency, addAll

List also has a sort instance method:

● When provided with null it uses the natural order of elements

(given by Comparable)

● Can use bespoke ordering when provided a lambda expression
(Comparator functional interface):

(T a, T b) -> { return <expression>;}

J14 Collections 11

Josh Bloch Item 25: Prefer lists to arrays

Why?

● Arrays are covariant, Generics are invariant

– if A extends B, then A[] is a subclass of B[]

– but List<A> has no relationship to List

// Fails at runtime!
Object[] array = new Long[1];
objectArray[0] = "I don’t fit in"; // Throws ArrayStoreException

// Won’t compile!
List<Object> list = new ArrayList<Long>(); // Incompatible types
list.add("I don’t fit in");

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J15 Exceptions

Java Exceptions
Catch or Specify
Java syntax

J15 Exceptions 2

Exceptions

Exceptions are a control flow construct for error management.

Some similarity to event handling (lecture topic X02)

● Both disrupt the normal flow of execution, transferring to event
handler or exception handler

● However: exceptions are exceptional situations (events are expected)

– A file is not found or is inaccessible

– An array is accessed incorrectly (out of bounds)

– Division by zero

– A null pointer is dereferenced, etc.

J15 Exceptions 3

Java Exceptions

Exceptions are thrown either:

● Implicitly (via a program error) or

● Explicitly (by executing the throw statement).

Exceptions are caught with a catch block.

Exceptions are propagated from callee to caller (call stack is
unwound) until a matching handler is found.

J15 Exceptions 4

Kinds of Java Exception and Compile-time Check

● error (Error and its subclasses),

– serious problems that a reasonable application probably shouldn’t attempt to catch

● runtime exception (RuntimeException and its subclasses),

– exceptional situation that often cannot be anticipated or recovered from (e.g., program
bugs, logic error, API misuse): probably should fix the bug rather than catch

● checked exception (everything else)

– can be thrown during normal operation and can be reasonably anticipated and handled

Code that may throw a checked exception must comply with the catch or specify
requirement, i.e. must be enclosed by either:

● a try statement with a suitable handler, or

● a method that declares that it throws the exception

u
n
c
h
e
c
k
e
d

e
x
c
e
p
ti
o
n
s

J15 Exceptions 5

Java Exception Type Class Hierarchy

Throwable

Error

Exception

RuntimeException

ArithmeticEx…

IndexOutOfBoundsEx…

IllegalArgumentEx…

NullPointerEx…

Etc.

IOError

ThreadDeath

Etc.

IOException

SQLException

TimeoutException

Etc.

J15 Exceptions 6

Java try/catch Block Syntax

try {

 // do something that may generate an exception

} catch (ArithmeticException e1) { // first catch

 // this is an arithmetic exception handler

 // handle the error and/or throw an exception

} catch (Exception e2) { // may have many catch blocks

 // this an generic exception handler

 // handle the error and/or throw an exception

} finally {

 // this code is guaranteed to run

 // if you need to clean up, put the code here

}

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J16 Java Threads

Thread and Runnable
start(), join() and sleep()
Races and synchronized

J16 Java Threads 2

Thread and Runnable

● The Thread class is used to create threads and interact with

them.

● Two ways to create a thread:

– Subclass Thread, overriding its run() method.

● Correspondence between instances of the class and threads.

● Disadvantages: can’t subclass anything else.

– Use the Runnable interface and implement its run() method.

● Use Thread.currentThread() to access the thread that is

executing the run() method.

J16 Java Threads 3

start(), join() and sleep()

● Calling t.start() will start execution of the run() method

within the thread t (then continue execution of the current
thread).

● Calling t.join() will cause the current thread to wait until

thread t terminates.

● Calling Thread.sleep(ms) will cause the current thread to go

to sleep for ms milliseconds.

J16 Java Threads 4

Races and the synchronized keyword

● Too many cooks…

– Coordination is the big challenge of concurrency

– How do we avoid conflicts?

– How do we impose some level of coherence and order?

● A ‘race condition’ is a situation where one or more threads race
non-deterministically to be the first to read or write a variable

● The synchronized keyword

– Qualify a method, ensures only one thread executes that method at
any time

	Slide 1
	Slide 2
	Why Java?
	Imperative Programming Languages
	Imperative Programming Languages (2)
	Slide 6
	Slide 7
	Slide 8
	The Java Standard Library
	The Oracle Java Tutorials
	The Waterloo Java Visualizer
	Slide 1
	Objects
	Classes (2)
	Methods (2)
	Slide 5
	Slide 6
	Inheritance
	Slide 1
	Java Naming
	Java Packages
	Java Variables
	Java’s Primitive Data Types
	Java Literals
	Java Arrays
	Slide 1
	Expressions
	Java Operators
	Statements
	Blocks
	Methods (2)
	Method Declaration
	Slide 8
	Returning a Value from a Method
	Class and Instance methods
	Slide 1
	Control Flow
	if-then & if-then-else statements
	The old switch statement
	The new switch expression
	Slide 1
	The while & do-while statements
	The for statement
	Branching statements
	Slide 1
	Slide 2
	Method Declaration
	Returning a Value from a Method
	Slide 5
	Slide 6
	Slide 7
	Parameters (method arguments)
	Slide 9
	Slide 10
	Class and Instance methods
	Slide 1
	Nested Classes (2)
	Slide 3
	Slide 1
	Functional Interfaces
	Lambda Expressions (2)
	Slide 1
	The Number Classes
	Autoboxing
	The Math class
	Slide 1
	The Character Class
	The String Class
	Operations on Strings
	Slide 1
	Generics (2)
	Slide 3
	Slide 1
	Type Inference (2)
	Local Variables
	Lambda Expressions
	Slide 1
	The Collections Framework
	The Collection Interface
	Collection Types
	Concrete Collection Types
	Four Commonly Used Collection Types
	forEach
	Slide 8
	Ordering Collections
	Collections.sort()
	Josh Bloch Item 25: Prefer lists to arrays
	Slide 1
	Exceptions (2)
	Java Exceptions
	Kinds of Exception in Java and Compile-time Check
	Java Exception Type Class Hierarchy
	Java try/catch Block Syntax
	Slide 1
	Thread and Runnable
	start(), join() and sleep()
	Races and the synchronized keyword

