
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

J12 GenericsJ12 Generics

GenericsGenerics

J12 Generics 2

Generics

Sometimes it is useful to parameterize a class with a type, T.

Rather than IntContainer, LongContainer, etc. we can just
write Container<T>, and then create instances of types such as
Container<Integer>.

We can also create generic methods that accept type parameters:
 static <T> void acceptSomeValue(T value) { … }

Prior to the introduction of Java generics, programmers often used
Object as a work-around as it can refer to any non-primitive type.

J12 Generics 3

Type Parameters

● By default, the only thing that is assumed about a type parameter T is that it is an
object: i.e. it extends Object.

– No primitives can be used as a generic type (big part of the reason for boxing primitives)

– When working with a variable that has a generic type, all we can do is pass it around and
call methods that are defined for Object.

● Bounds can be put on type parameters to make them “less generic”.

– E.g., public <T extends Number & MyInterface> void method(T t) {…}

– This restricts the types that can be used with the generic.

– This increases the assumptions that can be made about a variable of this generic type.

● Limits on generic method overloading (type erasure).

	Slide 1
	Generics (2)
	Slide 3

