
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

O01 Classes and Objects 1O01 Classes and Objects 1

Class declaration
Object creation

Class declaration
Object creation

O01 Classes and Objects 1 2

Classes and objects

Java is an object-oriented language.

● Objects combine state (fields) and behaviour (methods).

● A class defines a type objects (what fields and methods they
have).

– Each objects is an instance of a class.

● Classes form a hierarchy.

– java.lang.Object is the root (ultimate ancestor) class of all Java

classes.

O01 Classes and Objects 1 3

Class Declaration

A class declaration will have the following, in order:

● Any modifiers (public, private, etc.)

● The keyword class

● The class’ name (first letter capitalized)

● Optional: superclass’ name preceded by extends

● Optional: list of interfaces preceded by implements

● The class body surrounded by braces {}

O01 Classes and Objects 1 4

Class Member Declarations

Fields and methods of a class are known as “class members”.

Field (member variable) declarations have the following, in order:

● Any modifiers (public, private, static, etc.)

● The field’s type

● The field’s name

● (optional) a ‘=’, followed by an initial value expression.

Declarations are statements – end with ‘;’.

O01 Classes and Objects 1 5

Constructors

A constructor is a special method that is automatically executed when
an instance is created.

Constructors differ from normal methods:

● They have no return type.

● They have the same name as the class.

If no constructor is defined, the compiler will automatically call the
constructor for the class’ superclass

Note: If no other constructor defined, class inherits a no-parameter
constructor from Object.

O01 Classes and Objects 1 6

The this keyword

Within instance methods and constructors, the this keyword

refers to the object whose method or constructor is being called.

● Disambiguating field names from parameters

– Parameters and instance field names may clash. The this

keyword explicitly refers to the instance.

● Calling other constructors

– When there are multiple constructors, they may call each other
using this as if it were the method name.

O01 Classes and Objects 1 7

Creating Objects

An object-creating expression consists of

● the keyword new

● followed by a call to the class’ constructor

Typically, the newly created object is assigned to a variable of
matching type (class).

Objects may be deleted automatically when they are known to no
longer be in use (garbage collection).

O01 Classes and Objects 1 8

Using Objects

Outside a class, an object reference followed by the dot ‘.’ operator must
be used:

● Reference the object’s fields

– Object reference, ‘.’, field name

● Call the object’s methods

– Object reference, ‘.’, method name, arguments in parentheses

Within instance methods, the object’s fields and methods can be accessed
directly by name, (optionally with the this keyword).

– fieldName or methodName()

– this.fieldName or this.methodName()

O01 Classes and Objects 1 9

Overloading

A class can have several methods with the same name, but
different arguments (number, type, order), often called
“overloading”.

● Overloaded methods may have different return types.

● You can overload the constructor.

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

O02 Classes and Objects 2O02 Classes and Objects 2

Access control
Initializer blocks
enum types
Garbage collection

Access control
Initializer blocks
enum types
Garbage collection

O02 Classes and Objects 2 2

Variable Scope

The scope of a variable is the section of code from within which it
can be accessed.

● The scope of local variables and parameters is limited to the
containing method or block.

– Local variables cease to exist when execution leaves the method
or block.

● The scope of class and instance fields depends on the access control

modifiers (private, public, etc).

O02 Classes and Objects 2 3

Access Control

Access modifiers determine which other classes can access fields
and methods:

● Top-level: public or package-private (no modifier).

● Member level: public, protected, package-private, or
private

Modifier Class Package Subclass World

public ✓ ✓ ✓ ✓

protected ✓ ✓ ✓ ✗

no modifier ✓ ✓ ✗ ✗

private ✓ ✗ ✗ ✗

O02 Classes and Objects 2 4

Class Members

The static modifier keyword identifies class variables and

methods.

● A class variable is shared by all instances of the class.

● A class method is called without reference to an object

– Cannot use this in a class method (there is no “this”).

– A class method can only reference class fields.

– Class methods can be referenced (called) from outside the class
using the class name.

O02 Classes and Objects 2 5

Initializer Blocks

Fields may be initialized when they are declared. They can also be
initialized by initializer blocks, which can initialize fields using
arbitrarily complex code (error handling, loops, etc.).

● A static initializer block is consists of code enclosed by braces
‘{}’and preceded by the static keyword. It runs when the class

is first accessed.

● A instance initializer block does not have the static

keyword, and runs before the constructor body of the class.

O02 Classes and Objects 2 6

Enum Types

An enumerated type is defined with the enum keyword.

A variable of enum type must be one of a set of predefined values.
This is useful for defining non-numerical sets such as NORTH, SOUTH,

EAST, WEST, or HD, D, CR, P, N, etc.

● May have other fields

● May have methods

● May use constructors

● Can be used as argument to iterators

– use static values() method.

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

O03 InterfacesO03 Interfaces

Interfaces
Abstract classes and methods

Interfaces
Abstract classes and methods

O03 Interfaces 2

Interfaces

An interface can be thought of as a contract that a class can satisfy.

● Uses interface keyword rather than class

● Cannot be instantiated (can’t be created with new)

● Can contain (all implicitly public):

– Abstract methods (method declaration without a body)

– Default methods (using default modifier)

– Static methods (using static modifier)

– Constants (implicitly static final)

● Classes implement interfaces via implements keyword

– A class which implements an interface must provide the specified functionality.

O03 Interfaces 3

Interfaces as Types

An interface can be used as a type

● A variable declared with an interface type can hold a reference
to a object of any class that implements that interface.

O05 Object reference 4

Abstract Classes and Methods

The abstract keyword in a class declaration states that the class

is abstract, and therefore cannot be instantiated (its subclasses
may be, if they are not abstract).

The abstract keyword in a method declaration states that the

method declaration is abstract; the implementation must be
provided by a subclass (like abstract methods in an interface, but
applied selectively and explicitly).

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

O04 InheritanceO04 Inheritance

Inheritance
Hiding and overriding
Polymorphism
The super keyword

Inheritance
Hiding and overriding
Polymorphism
The super keyword

O04 Inheritance 1 2

Inheritance

A class that inherits is known as a subclass, derived class, or child
class. Its parent is known as a superclass, base class, or parent
class.

● Subclasses inherit via the extends keyword

● All classes implicitly inherit from java.lang.Object

O04 Inheritance 1 3

Overriding and Hiding Methods

● Instance methods

– If method has same signature as one in its superclass, it is said to
override. Mark with @Override annotation.

– Same modifiers, return type, name, and sequence of parameter types as
the overridden parent method.

– Dynamic dispatch: The type of the object (not the variable referring to it)
determines which method is called.

● Class methods

– If it has same signature, it hides the superclass method.

– The class with respect to which the call is made determines the method.

O04 Inheritance 1 4

Polymorphism: “Many-forms”

A reference variable may refer to an instance that has a more specific
type than the variable.

The method that is called depends on the type of the instance, not the
type of the reference variable.

This overriding of methods is a form of runtime polymorphism
(actual underlying type will dynamically determine the behaviour).
Interfaces also provide a form of runtime polymorphism.

Method overloading (same name, different type signatures) and
operator overloading (e.g., +) are a form of compile-time
polymorphism.

O05 Inheritance 2 5

The Object superclass

All Java classes ultimately inherit from one root class: java.lang.Object.

Some of its methods are:

● clone() returns (shallow) copy of object

– Note: cloning is not automatically supported by all classes.

● equals(Object other) establishes semantic equivalence

● finalize() called by GC before reclaiming

● getClass() returns runtime class of the object

● hashCode() returns a hash code for the object

● toString() returns string representation of object

O04 Inheritance 1 6

The super keyword

You can access overridden (or hidden) members of a superclass
by using the super keyword to explicitly refer to the superclass.

You can call superclass constructors by using super() passing

arguments as necessary.

O04 Inheritance 1 7

Type Casting

A reference to an object of a given class can be explicitly converted to a
reference to a subclass: this is called (dynamically) “type casting”.

Because it is not guaranteed that the object is of the subclass, explicit
casting can always result in a ClassCastException, which must be

caught.

Try {

 SubClass y = (SubClass)x;

catch (ClassCastException e) {

 // statements to execute if x is not of class SubClass

}

ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

O05 Object referenceO05 Object reference

Heap and memory management
Equality
Final classes, methods and fields

Heap and memory management
Equality
Final classes, methods and fields

O05 Object reference 2

The Heap

The heap: a large region(s) of memory used to store dynamically
allocated objects (objects created with new).

String 1

String 2

ArrayList 1

O05 Object reference 3

Variables and References

● For variables of primitive types, the value is stored directly.

● For variables of reference types (all objects), the “value”
stored is a reference to an object stored on the heap.

– Such variables can be set to null (reference to nothing).

– Method calls, fields automatically access the object pointed to.

● NullPointerException thrown if reference is null

– More than one variable can refer to the same object.

O05 Object reference 4

Equality

● Variables of primitive types:

– Use == for equality.

– Have no methods (i.e. have no equals()).

● Variables that reference objects:

– a == b: true iff a and b refer to the same object instance.

● Checking the variable’s immediate value is the same, which is a reference.

● Two different instances can have exactly the same fields, and yet not be ==.

– a.equals(b): class-specific (semantic) object equality.

● Default inherited from java.lang.Object is just ==.

O05 Object reference 5

Garbage Collection

In Java, there is no explicit deallocation of objects.

A garbage collector automatically reclaims heap space used by
objects that are no longer reachable (no longer referenced, directly
or indirectly, by any variable in the program).

O05 Object reference 6

The final modifier

● A final field can not be reassigned

● A final method cannot be overidden

● A final class cannot be subclassed.

A static final field of a primitive type is like a constant.

A static final field of a reference type will always refer to the

same object, but that object may change.

	Slide 1
	Objects
	Class Declaration
	Member Variable Declaration
	Constructors
	The this keyword
	Creating Objects
	Using Objects
	Slide 9
	Slide 1
	Locals (stack), Globals (statics), and Heap (objects)
	Access Control
	Class and Instance Members
	Initializers
	Enum Types
	Slide 1
	Interfaces (2)
	Interfaces as Types
	Abstract Classes and Methods
	Slide 1
	Inheritance
	Overriding and Hiding Methods
	Polymorphism
	Object as superclass
	The super keyword
	Slide 7
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Garbage Collection
	Slide 6

