
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

S05 Software DesignS05 Software Design

Software Complexity
Software Design
Software Complexity
Software Design



S05 Software Design 2

Software Complexity

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+
[<]<-]>>.>---.+++++++..+++.>>.<-.<.++
+.------.--------.>>+.>++.

● “Hello World” in the BrainF#@k language
(apparently: source wikipedia)

● Syntax only 8 characters, Turing complete
● Simple or complex?



S05 Software Design 3

Software Complexity

● The International Obfuscated 
C Code Contest

● Yusuke Endoh one of the 2020 
winners: Minesweeper Solver



S05 Software Design 4

What is Software Complexity?

● Accidental Complexity
– Software that is designed or presented in a way that is more 

difficult for a human to understand, use and modify than it 
needs to be.

– It is difficult to write elegant, clear, reusable code.

● Essential Complexity
– Inherent to the problem being solved. Irreducible.

● Not to be confused with computational complexity.



S05 Software Design 5

Software Complexity

● Some contributing factors:
– Interlinking many components

– Unstated assumptions

– Non-local changes, unintuitive side-effects

– Duplication / lack of encapsulation / exposure to details

– Poor naming

– Not following conventions / inconsistency

● Often incrementally works its way into a project, e.g., feature 
creep, dealing with legacy.



S05 Software Design 6

Good Software Design

● Many opinions. Conventions / preferences vary between communities.
● Recommendation:

A Philosophy of Software Design, John Ousterhout

● Design principles
● Red flags



S05 Software Design 7

Some Principles (Ousterhout) 

● Deep “modules” (method, class, package, or module)
– Simple interfaces* (narrow)

– Encapsulate lots of complexity (depth)

– General-purpose

● Prefer simple interface over simple implementation
● Design errors out of existence
● Design for ease of reading, not ease of writing
● Extra: Don’t Repeat Yourself (DRY) and SOLID principles

* Interfaces in the broad sense, not just the Java keyword



S05 Software Design 8

Some Red Flags (Ousterhout)

● Shallow module: interface not much simpler than implementation
● Overexposure: user needs to be aware of rarely-used features
● Repetition: non-trivial code is repeated
● Conjoined methods: methods are so co-dependent that you 

have to understand implementation of both
● Comment repeats code
● Hard to name entity
● Extra: Deeply nested control-flow blocks


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

