

JavaFX

* Designed for rich client applications
- Graphics, Ul's, video, audio, etc.

* Replaces Swing, AWT

e JavaFX HelloWorld

X01 JavaFX 1

..

Extend javafx.application.Application

Override the start () method

javafx.stage.Stage

Stage: the window .
javafx.scene.Scene

Scene: container for a scene graph Javafx.scene.Group

Node: object or group of objects in scene Root

Pane: organizer of nodes in scene graph:

FlowPane, BorderPane, GridPane, HBoX, . -

VBoOX, efc.

Java FX Scene Graph

Tree of nodes, with a single ‘branch’ at the root
branch (may have children e.g. Group, Region)

leaf (may not have children e.g. Rectangle, Circle)

. ROOT NODE Group
! ! ' ! ! |
. LEAF NODE . LEAF NODE BRANCH NODE Circle Rectangle Region
! | ! |
LEAF NODE LEAF NODE Text ImageView

Copyright Oracle (http://docs.oracle.com/javafx/2/scenegraph/jfxpub-scenegraph.htm)

’ii))-ﬂ:-

X01 JavaFX 1

Nodes and Properties

Can set node properties programmatically:

Text message = new Text("Hello");
message.setFont(Font.font("Tahoma", FontWeight.NORMAL, 40);

message.setFill(Color.RED);

or declaratively using FXML / CSS:

#text {
-fx-font-family: Tahoma,
-fx-font-style: normal;
-fx-font-size: 40;
-fx-fill: red;

}

sans-serif;

..

X01 JavaFX 1

Event Handling

Event handling is another control flow construct.
* Branches (a conditional or switch selects control flow)
* Loops (a loop repeats control flow)
* Methods (a method call nests control flow)
* Events (the occurrence of event changes control flow)
- Event handling in Uls
— Exception handling (later)

X02 JavaFX 2

Events and Passing Code In Java

An event handler executes some code when an event occurs.

Q: How do we pass code as an argument in Java?

A: We pass objects, which implement interfaces through methods.

JavaFX event handler interfaces are functional, so we can use
lambda expressions.

X02 JavaFX 2 3

..

« Events are instances of javafx.event.Event
- Have Event type, Source, Target

« Event handlers implement javafx.event.EventHandler
- Functional interface, with method void handle(Event).

* An event handler can be created with a lambda expression, for
example:

scene.setOnKeyTyped(event -> { })
(or a nested class, an anonymous inner class, ...)

S i, S y L sy
o - -_1"-1.1."_.&:‘ , i % 1 j- “.'. 3 %
=Sehoel of Computing — St u%d’*“ﬁf

RN ey o

Oy W
) 1N e b o * l'_alJ '*I
™ ‘ML S

GUI Design Principles

* Separation of data and domain logic from its presentation.

- Enable multiple ways to display the same data, either multiple
GUIs can be developed or multiple views of the same thing within
the same GUI.

- Make it easier / possible to test the domain logic.
— Separation of responsibilities, source of truth of state.

GUI Model

X03 JavaFX 3 2

GUI Architectural Patterns

Model-View-Controller (MVC)

Model-View-Presenter (MVP)

Model-View-ViewModel (MVVM)

Events

—

Events
—>

View

X03 JavaFX 3

View

View Update
4—
P Model

Events Modifies .
—— > Controller

Update Update
<—

Events Presenter Modifies Model
Data binding Update
<« » ViewModel Modifies Model

S

Recommendations

* Separate GUI from game logic and state, but keep it simple
(no need to try these architectural patterns).

 Don’t let the GUI and Model get out of sync, and always check
with the model.

- Event -> Modify model -> Update view based on model

* Purely GUI considerations should be kept out of the model
(e.g., position of object being dragged).

4—

GUI Model
-

X03 JavaFX 3 4 -

	Slide 1
	JavaFX
	JavaFX (2)
	Java FX Scene Graph
	Nodes and Properties
	Slide 1
	Event Handling
	Events and Passing Code in Java
	Events in JavaFX
	Slide 1
	Slide 2
	Event Handling
	Slide 4

