
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

A04 Sets: HashSet

Hash tables
A hash-table-based Set implementation



A04 Sets: HashSet 2

Hash Tables

Stores keys, using a hash function to map a key into a table entry. Optionally, 
values can be associated with keys and stored alongside them in the table.

Main challenges are: a) dealing with hash collisions and dealing with load 
(how big to make the table).

Two broad approaches:
● Separate chaining

– Hash table entries are lists: (key, value) pairs are in lists.

● Open addressing
– Hash table entries are (key, value) pairs.

– Collisions resolved by probing – e.g. find next entry slot



A04 Sets: HashSet 3

HashSet Implementation of a Set

● Special case of hash table where we only have key (it is not 
associated with any value).

● We’ll demonstrate separate chaining where our lists only 
needs to store a single item rather than a pair.



A04 Sets: HashSet 4

orange

apple banana

pear

apricot

peach

mango

plum

grape

cherry

a-f

g-m

n-t

u-z

fruit

apple

orange

banana

pear apricot

peachmango

plum
cherry

grape



A04 Sets: HashSet 5

fruit

orange

apple banana

pear

apricot

peach

mango

plum

grape

cherry

a-f

g-m

n-t

u-z

appleorangebananapearapricotpeachmangoplumgrapecherry



A04 Sets: HashSet 6

orange

apple banana

pear

apricot

peach

mango

plum

grape

cherry

a-f

g-m

n-t

u-z

fruit.contains(“orange”)

orangefiggrape

✓

✓

✗fruit.contains(“grape”)fruit.contains(“fig”)

fruit



The load factor is the ratio of number of elements to the number of 
“buckets” (size of table).

By resizing (doubling) table capacity when lists grow “too long”, add and 
contains can run in amortised constant time (assuming a good hash 
function). 

(Illustration from “Think Python: How to think like a computer scientists” (2nd ed) by Allen B. Downey.)

Load Factor



A04 Sets: HashSet 8

Complexity

boolean add(T value);
boolean contains(T value);
int size();
boolean remove(T value);

● add,contains,remove – Time O(1) amortized, O(n) worst
● good hash function
● table resized to keep table load factor in a range

● size – Time O(1)
● explicitly tracked

Space O(n)


	Slide 1
	Hash Tables
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

