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A04 Sets: HashSet

Hash tables
A hash-table-based Set implementation
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Hash Tables

Stores keys, using a hash function to map a key into a table entry. Optionally, 
values can be associated with keys and stored alongside them in the table.

Main challenges are: a) dealing with hash collisions and dealing with load 
(how big to make the table).

Two broad approaches:
● Separate chaining

– Hash table entries are lists: (key, value) pairs are in lists.

● Open addressing
– Hash table entries are (key, value) pairs.

– Collisions resolved by probing – e.g. find next entry slot
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HashSet Implementation of a Set

● Special case of hash table where we only have key (it is not 
associated with any value).

● We’ll demonstrate separate chaining where our lists only 
needs to store a single item rather than a pair.
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The load factor is the ratio of number of elements to the number of 
“buckets” (size of table).

By resizing (doubling) table capacity when lists grow “too long”, add and 
contains can run in amortised constant time (assuming a good hash 
function). 

(Illustration from “Think Python: How to think like a computer scientists” (2nd ed) by Allen B. Downey.)

Load Factor
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Complexity

boolean add(T value);
boolean contains(T value);
int size();
boolean remove(T value);

● add,contains,remove – Time O(1) amortized, O(n) worst
● good hash function
● table resized to keep table load factor in a range

● size – Time O(1)
● explicitly tracked

Space O(n)
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