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Computational Complexity

Key computational resources:
● Time
● Space
● Energy, communications, I/O, samples...

Computational complexity is the study of how problem size affects 
resource consumption (how it scales). Distinguish:

● Algorithm Complexity: for a given algorithm / implementation
● Problem Complexity: for any algorithm that solves the problem

– Inherit difficulty of the problem (Computational Complexity Theory)
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Algorithm Complexity
● Identify n, the number that characterizes the problem size.

– Number of pixels on screen
– Number of elements to be sorted
– etc.

● Study the algorithm to determine how resource consumption changes as a function of n.
● The content of the input, not just its size, can be important. Can study:

– Worst case (the worst input of size n)
– Best case (the best input of size n)
– Average case (average of distribution of inputs of size n)
– Amortized analysis (amortized cost over a sequence of n typical operations)

● Useful for an operation with state that occasionally has an expensive step
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Big O Notation

Suppose we have a problem of size n that takes g(n) time to 
execute in the average case.

We say:
    g(n)  O(f(n))∈
iff there exists constants c > 0 and
n0 > 0 such that for all n > n0 :
    g(n) ≤ c × f(n)

f(n) = n

3 f(n) = 3 n
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Time complexity

In analysis of algorithm time complexity, we are interested in the 
number of “elementary operations/statements” (not μs).

● Simple statements are constant time.
● Remember the factor c in O(f(n)).
● Beware: Library/subroutine calls can have arbitrary complexity.
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Summing a List
Consider summing a list of size n…

public int sum(ArrayList<Integer> list) {
    int rtn = 0;
    for (var i: list) {
        rtn += i;
    }
    return rtn;
} Linear time, O(n)
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Minimum Difference
public int minDiff(ArrayList<Integer> values) {
    int min = Integer.MAX_VALUE;
    for (int i = 0; i < values.size(); i++) {
        for (int j = i + 1; j < values.size(); j++) {
            int diff = values.get(i) – values.get(j);
            if (Math.abs(diff) < min)
                min = Math.abs(diff);
     }
   } 
 }

S(n) = 1 + n + 4 (n(n – 1)/2) 
        = 1 + n + 2 n2 – 2n 
        = 2n2 – n + 1  O(n∈ 2)

n(n – 1)/2

n(n – 1)/2

n(n – 1)/2
n(n – 1)/2

n

1

Note: n – 1 + n – 2 + … 2 + 1 = n(n – 1)/2
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More Examples
● Constant O(1)

– Time to perform an addition 
● Logarithmic O(log(n))

– Time to find an element in a B-Tree (self-balancing tree)
● Linear O(n)

–  Time to find an element within a list
● O(n log(n))

– Average time to sort using mergesort
● Quadratic O(n2)

– Time to compare n elements with each other pair-wise
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Example: Greatest Up To

Find the greatest element ≤ x in an unsorted sequence of n 
elements (or else return null).

Two approaches:
● a) search the unsorted sequence; or
● b) first sort the sequence, then search the sorted sequence.
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Analysis
● If we’re lucky, uList[0] == x.
● Worst case?

● uList = {x – n, ..., x – 2, x – 1}
● f(n) = 6n, so O(n)

Unsorted Greatest Up To
static Integer unsortedFind(int x, List<Integer> uList) {
    Integer best = null;
    for (var e : uList) {
        if (e == x)
            return e;
        if (e <= x && (best == null || e > best))
            best = e;
    }
    return best;
}
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Analysis
● How many iterations of the loop?
● Initially, upper – lower = n.
● The difference is halved in every iteration.
● Can halve it at most log2(n) times before it becomes 1.
● f(n) = a log2(n) + b, so O(log(n)).

Sorted Greatest Up To
static Integer sortedFind(int x, ArrayList<Integer> sList) {
    if (sList.isEmpty() || sList.get(0) > x)
        return null;
    int lower = 0;
    int upper = sList.size();  // one past the end
    while (upper - lower > 1) {
        int mid = (lower + upper) / 2;
        if (sList.get(mid) <= x)
            lower = mid;
        else
            upper = mid;
    }
    return sList.get(lower);
}
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Problem complexity

The complexity of a problem is the resources (time, memory, etc) 
that any algorithm must use, in the worst case, to solve the 
problem, as a function of instance size.
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How fast can you sort?

Any sorting algorithm that uses only pair-wise comparisons 
needs O(n log(n)) comparisons in the worst case.

log(n!) = log(1) + log(2) + … + log(n) ≤ n log(n) for large enough n.
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Rate of Growth

T(
2 n

) /
 2

 T
(n

)
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Caution

“Premature optimization is the root of all evil in programming.”
(C.A.R. Hoare)

Scaling behaviour becomes important when problems become 
large, or when they need to be solved very frequently.
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