
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C02 Computational Complexity

Time and Space Complexity
Algorithm vs Problem Complexity
Big O Notation
Examples

C02 Computational Complexity 2

Computational Complexity

Key computational resources:
● Time
● Space
● Energy, communications, I/O, samples...

Computational complexity is the study of how problem size affects
resource consumption (how it scales). Distinguish:

● Algorithm Complexity: for a given algorithm / implementation
● Problem Complexity: for any algorithm that solves the problem

– Inherit difficulty of the problem (Computational Complexity Theory)

C02 Computational Complexity 3

Algorithm Complexity
● Identify n, the number that characterizes the problem size.

– Number of pixels on screen
– Number of elements to be sorted
– etc.

● Study the algorithm to determine how resource consumption changes as a function of n.
● The content of the input, not just its size, can be important. Can study:

– Worst case (the worst input of size n)
– Best case (the best input of size n)
– Average case (average of distribution of inputs of size n)
– Amortized analysis (amortized cost over a sequence of n typical operations)

● Useful for an operation with state that occasionally has an expensive step

C02 Computational Complexity 4

Big O Notation

Suppose we have a problem of size n that takes g(n) time to
execute in the average case.

We say:
 g(n) O(f(n))∈
iff there exists constants c > 0 and
n0 > 0 such that for all n > n0 :
 g(n) ≤ c × f(n)

f(n) = n

3 f(n) = 3 n

C02 Computational Complexity 5

Time complexity

In analysis of algorithm time complexity, we are interested in the
number of “elementary operations/statements” (not μs).

● Simple statements are constant time.
● Remember the factor c in O(f(n)).
● Beware: Library/subroutine calls can have arbitrary complexity.

C02 Computational Complexity 6

Summing a List
Consider summing a list of size n…

public int sum(ArrayList<Integer> list) {
 int rtn = 0;
 for (var i: list) {
 rtn += i;
 }
 return rtn;
} Linear time, O(n)

C02 Computational Complexity 7

Minimum Difference
public int minDiff(ArrayList<Integer> values) {
 int min = Integer.MAX_VALUE;
 for (int i = 0; i < values.size(); i++) {
 for (int j = i + 1; j < values.size(); j++) {
 int diff = values.get(i) – values.get(j);
 if (Math.abs(diff) < min)
 min = Math.abs(diff);
 }
 }
 }

S(n) = 1 + n + 4 (n(n – 1)/2)
 = 1 + n + 2 n2 – 2n
 = 2n2 – n + 1 O(n∈ 2)

n(n – 1)/2

n(n – 1)/2

n(n – 1)/2
n(n – 1)/2

n

1

Note: n – 1 + n – 2 + … 2 + 1 = n(n – 1)/2

C02 Computational Complexity 8

More Examples
● Constant O(1)

– Time to perform an addition
● Logarithmic O(log(n))

– Time to find an element in a B-Tree (self-balancing tree)
● Linear O(n)

– Time to find an element within a list
● O(n log(n))

– Average time to sort using mergesort
● Quadratic O(n2)

– Time to compare n elements with each other pair-wise

C02 Computational Complexity 9

Example: Greatest Up To

Find the greatest element ≤ x in an unsorted sequence of n
elements (or else return null).

Two approaches:
● a) search the unsorted sequence; or
● b) first sort the sequence, then search the sorted sequence.

C02 Computational Complexity 10

Analysis
● If we’re lucky, uList[0] == x.
● Worst case?

● uList = {x – n, ..., x – 2, x – 1}
● f(n) = 6n, so O(n)

Unsorted Greatest Up To
static Integer unsortedFind(int x, List<Integer> uList) {
 Integer best = null;
 for (var e : uList) {
 if (e == x)
 return e;
 if (e <= x && (best == null || e > best))
 best = e;
 }
 return best;
}

C02 Computational Complexity 11

C02 Computational Complexity 12

Analysis
● How many iterations of the loop?
● Initially, upper – lower = n.
● The difference is halved in every iteration.
● Can halve it at most log2(n) times before it becomes 1.
● f(n) = a log2(n) + b, so O(log(n)).

Sorted Greatest Up To
static Integer sortedFind(int x, ArrayList<Integer> sList) {
 if (sList.isEmpty() || sList.get(0) > x)
 return null;
 int lower = 0;
 int upper = sList.size(); // one past the end
 while (upper - lower > 1) {
 int mid = (lower + upper) / 2;
 if (sList.get(mid) <= x)
 lower = mid;
 else
 upper = mid;
 }
 return sList.get(lower);
}

C02 Computational Complexity 13

C02 Computational Complexity 14

Problem complexity

The complexity of a problem is the resources (time, memory, etc)
that any algorithm must use, in the worst case, to solve the
problem, as a function of instance size.

C02 Computational Complexity 15

How fast can you sort?

Any sorting algorithm that uses only pair-wise comparisons
needs O(n log(n)) comparisons in the worst case.

log(n!) = log(1) + log(2) + … + log(n) ≤ n log(n) for large enough n.

C02 Computational Complexity 16

C02 Computational Complexity 17

Rate of Growth

T(
2 n

) /
 2

 T
(n

)

C02 Computational Complexity 18

Caution

“Premature optimization is the root of all evil in programming.”
(C.A.R. Hoare)

Scaling behaviour becomes important when problems become
large, or when they need to be solved very frequently.

	Slide 1
	Context
	(Computational) Scaling
	Slide 4
	Slide 5
	Concrete Examples (2)
	Concrete Examples (3)
	Simple Examples
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

