
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

C04 Hash Functions

Hash functions
Choosing a good hash function

C04 Hash Functions 2

Hash Functions

A hash function is a function f that maps a key k, to a value f(k), within a
prescribed range. It maps arbitrary sized keys to fixed-sized hashes.

A hash is deterministic. (for a given key, k, f(k) will always be the same)

keys

hashes

dog cockatoo koala human….

0 1 2 3 4

C04 Hash Functions 3

Choosing a Good Hash Function

A good hash for a given population, P, of keys, k P∈ , will
distribute f(k) evenly within the prescribed range for the hash.

A perfect hash will give a unique f(k) for each k P∈ .

(Perfect hash is rarely possible:

 Pigeon hole principle.)

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/
TooManyPigeons.jpg/220px-TooManyPigeons.jpg

C04 Hash Functions 4

Why value determinism and even distribution?

● Lets reword how we stated determinism a bit:
– Given x, y, if x == y, then h(x) == h(y).

– It follows that (by contraposition):
● If h(x) != h(y), then x != y

● Even though we cannot give positive result (x is y) confidently,
– We can for the negative result (x is not y)

C04 Hash Functions 5

Why value determinism and even distribution?

● Now lets suppose h(x) gives an integer in range [0, 9]
● And suppose input is uniformly random
● With 10 values (or buckets), given inputs x and y, we have 90%

chance of deciding x != y in O(1)
● There is still a 10% chance of collision, but we have cut down

our average workload of later stage by 90%
– HashSet vs ArrayList

– More applications in C05

C04 Hash Functions 6

Why so many different hashes?

● We outlined the basic properties we look for in a hash
– Deterministic

● This is fundamental, and by definition of a mathematical function
● No exception to this requirement

– Even/uniform distribution of output
● This is not as indisputable – we don’t know what the distribution of input

is like
● But we try to obtain this by guessing what the “usual” input looks like,

e.g. statistical analysis of past usage

● The second point is roughly where the divergence begins

C04 Hash Functions 7

Why so many different hashes?

● For each input distribution, we would need a different hash function
to get an even distribution

Deterministic

Evenly distributed
output if input is

normally distributed

Evenly distributed
output if input is

evenly distributed

Evenly distributed
output if input is

bimodal

Deterministic Deterministic

C04 Hash Functions 8

Why so many different hashes?

● Even more variations if we want additional properties

DeterministicEvenly distributed
output if input is

normally distributed

Evenly distributed
output

DeterministicDeterministic

Fast on CPU

Low memory usage

Deterministic

Evenly distributed
output if input is

evenly distributed

Low memory usage

Secure

Evenly distributed
output

DeterministicDeterministic

Very slow

Very high memory
usage

C04 Hash Functions 9

Assume whatever distribution, pick a recipe

● From “Effective Java”, Josh Bloch

● (An approximate translation below in pseudo code)

● Assume you have fields (or more generally values) field0, field1, field2, …

● int result = 0; // accumulator
for (var field : fields) {
 var x = convertToInt(field); // recursively call this hash if needed
 result = 31 * result + x;
}

● How does this work? Suppose we have fields: x0, x1, x2

● After loop 0, result = x0

● After loop 1, result = 31 * x0 + x1

● After loop 2, result = 31 * (31 * x0 + x1) + x2 = 961 * x0 + 31 * x1 + x2

C04 Hash Functions 10

Intuition behind this pattern

● Why 961 * x0 + 31 * x1 + x2 (or similar)

● Each factor is used to disperse the field to a different band/partition of the output
range

● So it is sensitive to change of any field

x2

x1

x0

C04 Hash Functions 11

Why 31?

● From the book, multiplication with 31 is very efficient:
– 31 * x = (x << 5) - 1

● A more impactful answer (my guess) is we don’t use odd prime
very often. Suppose we use 100 instead of 31:
– 10000 * x0 + 100 * x1 + x2

● Suppose we reduce the range of hash by doing % 10, above
becomes
– x2

C04 Hash Functions 12

Why 31?

● Of course if we modulo 31, then we run into the same problem
● But not a super common number to use

– We see a lot of things using base 10, e.g. 10, 100, 1000
● Natural to human

– Or base 2, e.g. 1024, 2048, 4096
● Natural to machine

– Odd primes, less so. (We could have replaced 31 with 7 etc.)

C04 Hash Functions 13

Converting things into int

● Again mostly based on the recipe from Effective Java book

● Any numeric primitive type: multiply by prime, hashCode(), Float.floatToIntBits(x)

● Recursive: 31 * node.left.hashCode() + node.right.hashCode()

● Linear/array: treat each element as a field in previous recipe

C04 Hash Functions 14

More complex hash

● We can always mix and match, and use the recipe as the base
skeleton

● Suppose we parameterise the recipe as
– hash(int prime, List<int> fieldHashes)

● Examples:
– hash(31, fields in some order) // original reciple

– hash(31, fields in some order) + hash(7, fields in reverse order)

	Slide 1
	Hash Functions (2)
	Choosing a Good Hash Function
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

