

Hash functions \& Choosing a good hash futction

ANb-School of Computing - Structured Programming $1110 / 1140 / 6710$

Hash Functions

A hash function is a function f that maps a key k, to a value $f(k)$, within a prescribed range. It maps arbitrary sized keys to fixed-sized hashes.

A hash is deterministic. (for a given key, $k, f(k)$ will always be the same)

Choosing a Good Hash Function

A good hash for a given population, P, of keys, $k \in P$, will distribute $f(k)$ evenly within the prescribed range for the hash.

A perfect hash will give a unique $f(k)$ for each $k \in P$.
(Perfect hash is rarely possible:
Pigeon hole principle.)

Why value determinism and even distribution?

- Lets reword how we stated determinism a bit:
- Given x, y, if $x==y$, then $h(x)==h(y)$.
- It follows that (by contraposition):
- If $h(x)$!= $h(y)$, then x != y
- Even though we cannot give positive result (x is y) confidently,
- We can for the negative result (x is not y)

Why value determinism and even distribution?

- Now lets suppose $h(x)$ gives an integer in range [0, 9]
- And suppose input is uniformly random
- With 10 values (or buckets), given inputs x and y, we have 90% chance of deciding x != y in $O(1)$
- There is still a 10% chance of collision, but we have cut down our average workload of later stage by 90\%
- HashSet vs ArrayList
- More applications in C05

Why so many different hashes?

- We outlined the basic properties we look for in a hash
- Deterministic
- This is fundamental, and by definition of a mathematical function
- No exception to this requirement
- Even/uniform distribution of output
- This is not as indisputable - we don't know what the distribution of input is like
- But we try to obtain this by guessing what the "usual" input looks like, e.g. statistical analysis of past usage
- The second point is roughly where the divergence begins

Why so many different hashes?

- For each input distribution, we would need a different hash function to get an even distribution

Evenly distributed output if input is normally distributed
Deterministic

Evenly distributed
output if input is
evenly distributed
Deterministic

Evenly distributed output if input is bimodal
Deterministic

Why so many different hashes?

- Even more variations if we want additional properties

	Secure Low memory usage	
	Evenly distributed output	
Evenly distributed output if input is normally distributed	Deterministic	Very high memory usage
Deterministic	Low memory usage	Very slow
	Evenly distributed output if input is evenly distributed	Evenly distributed output
		Deterministic
Functions	Deterministic	

Assume whatever distribution, pick a recipe

- From "Effective Java", Josh Bloch
- (An approximate translation below in pseudo code)
- Assume you have fields (or more generally values) field0, field1, field2, ...
- int result = 0; // accumulator
for (var field : fields) \{
var x = convertToInt(field); // recursively call this hash if needed result = 31 * result + x;
\}
- How does this work? Suppose we have fields: $x 0, x 1, x 2$
- \quad After loop 0 , result $=x 0$
- After loop 1, result $=31$ * $x 0+x 1$
- After loop 2, result = 31 * (31 * x0 + x1) + x2 = 961 * x0 + 31 * x1 + x2

Intuition behind this pattern

- Why 961 * x0 + 31 * x1 + x2 (or similar)
- Each factor is used to disperse the field to a different band/partition of the output range
- So it is sensitive to change of any field

Why 31?

- From the book, multiplication with 31 is very efficient:
- 31 * $x=(x \ll 5)-1$
- A more impactful answer (my guess) is we don't use odd prime very often. Suppose we use 100 instead of 31 :
- 10000 * x0 + 100 * x1 + x2
- Suppose we reduce the range of hash by doing \% 10, above becomes
- x2

Why 31?

- Of course if we modulo 31, then we run into the same problem
- But not a super common number to use
- We see a lot of things using base 10, e.g. 10, 100, 1000
- Natural to human
- Or base 2, e.g. 1024, 2048, 4096
- Natural to machine
- Odd primes, less so. (We could have replaced 31 with 7 etc.)

Converting things into int

- Again mostly based on the recipe from Effective Java book
- Any numeric primitive type: multiply by prime, hashCode(), Float.floatToIntBits(x)
- Recursive: 31 * node.left.hashCode() + node.right.hashCode()
- Linear/array: treat each element as a field in previous recipe

More complex hash

- We can always mix and match, and use the recipe as the base skeleton
- Suppose we parameterise the recipe as
- hash(int prime, List<int> fieldHashes)
- Examples:
- hash(31, fields in some order) // original reciple
- hash(31, fields in some order) + hash(7, fields in reverse order)

