
ANU – School of Computing – Structured Programming 1110 / 1140 / 6710

S06 Code ReviewS06 Code Review

Code Review
Comments and Documentation
Code Review
Comments and Documentation



S05 Code Review 2

What is Software Complexity?

● Accidental Complexity
– Software that is designed or presented in a way that is more 

difficult for a human to understand, use and modify than it 
needs to be.

– It is difficult to write elegant, clear, reusable code.

● Essential Complexity
– Inherent to the problem being solved. Irreducible.

● Not to be confused with computational complexity (about 
performance).



S05 Code Review 3

Code Review

● One or more people review code who are removed from the 
implementation.

● Commonly done for a specific change (e.g., set of git commits) but can 
also be done for a complete project / implementation.

– Fix a specific bug

– Implement a new feature

– Refactor part of the code

● Gitlab offers a “merge request” workflow (“pull request” on github) where 
reviewers / maintainers review the changes before they are merged into 
the mainline branch.



S05 Code Review 4

Code Review Motivations

● Barrier to ensure project remains maintainable.

– Improve implementation / quality.

– Clarify code, double-check edge cases.

– On-balance rejection of a feature (accidental or essential complexity).

● Second pair of eyes: potentially less biased, can consider bigger picture, can 
bring new insight.

● Effective way to learn a new code-base and a team’s processes / 
conventions. Highlights interrelated parts.

● Can catch some bugs before reaching production… but implementer really 
should have adequate tests developed and passing.



S05 Code Review 5

Doing a Code Review

● Objective: is it in scope of this project

● Functionality (for end-users and developers):

– does it do what is intended

– edge cases / bugs

– might have to run code for UI changes etc

● Tests: present, appropriate

● Complexity: design minimises / encapsulates complexity

● Good names: convey information and not too long

● Comments: help to understand decisions and the why, not repeating code, appropriately documenting 
interfaces

● Conformance to project style guide / conventions.

– Formatting at a later stage can destroy attribution information, i.e. git blame become useless



S05 Code Review 6

Further Tips

● Be considerate.
● Point out things that are good!
● Clearly label nitpicks as such.

– (Or don’t nitpick at all – next slide.)

● No code is ever perfect. Tailor to circumstances: 
– flight control software

– a game



S05 Code Review 7

“Stop Nitpicking in Code Reviews” Dan Lew

● “First, we saw a vastly improved signal-to-noise ratio. Imagine a 
code review that results in five nits and one critical issue to address. 
In the hullabaloo of fixing those nits, the critical comment can seem 
less important or even get overlooked.”

● “Second, it improved everyone’s relationships with code reviews 
and those who conduct them. I’ve seen plenty of people talk online 
about how you shouldn’t take code reviews personally, that it’s the 
code being critiqued not the person, blah blah blah, it’s a bunch of 
bullshit. I’ve been going through code reviews for a decade and it still 
stings when someone points out my mistakes or pushes back on my 
code designs.”

https://blog.danlew.net/2021/02/23/stop-nitpicking-in-code-reviews/


S05 Code Review 8

Code Comments / Documentation

● Class or method comments – always for public

– How to use, edge cases, side-effects, pre/post-conditions, invariants, explain 
abstraction, examples.

– Should not leak the implementation details.

● Implementation comments – as required

– Give intuition where implementation is non-obvious to a likely contributor / your 
future self

– Highlight where edge cases are handled if hidden

– Rationale for the design if not the obvious choice

– Should not just repeat code



S05 Code Review 9

Additional pointers

● Examples
– https://github.com/junit-team/junit5/pull/3477

– https://github.com/junit-team/junit5/pull/3206

● Guide
– https://google.github.io/eng-practices/review/

https://github.com/junit-team/junit5/pull/3477
https://github.com/junit-team/junit5/pull/3206
https://google.github.io/eng-practices/review/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

