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Trees revisited
(BFS and DFS)




Trees (recap)

- Atreeis ahierarchical data structure that consists of nodes connected by edges
- Each node can have multiple children nodes, but only one parent node

- The node at the top of the hierarchy is called the root node, and it is the only node in
the tree that has no parent

- A node can have no children. Such nodes are called leaf hodes of the tree
- A node that has at least one children is called inner node
- Arity (a.k.a. degree) is the max number of children any node in the tree can have

- Trees are non-linear data structures, i.e., there are multiple ways to traverse them, in
contrast to linear data structures (such as arrays or lists), in which there is only one
natural sequence for traversal (i.e., from first to the last element)

- Question: according to the previous definition, are lists also (a special kind of) trees?
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Undlrected versus directed trees

Trees can (conceptually) be either undirected or directed

- In an undirected tree, all edges are bidirectional, i.e., a parent is connected to its
children, and children are connected to their parent (note: bidirectional edges are
typically implied in diagrams without arrow-heads)

- In adirected tree, the edges have a direction. The direction of an edge connecting a
parent and its child is such that the edge departs the parent and points to the child

root — e 0
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leaves Example: undirected (left) versus directed (right) binary (2-ary) trees
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Depth of a tree node

- Inatree, there is always only one path from the root to any other node in the tree

- The depth of a node is defined as the length (number of edges) of the path from the
root to that node
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Tree traversals (DFS and BFS)

- Refers to the process of visiting the tree nodes exactly once in a certain order

- As mentioned earlier, there are multiple ways a tree can be traversed
- Two common forms are:

- Depth-first search (DFS). Explore as deep as possible along a branch till a leaf is
reached. Then, backtrack to node in another branch (e.g., sibling of leaf, sibling of
parent, sibling of grand-parent, etc.)

- Breadth-first search (DFS). Starting from the root (i.e., depth=0), explore all nodes
at given depth before going deeper to the next depth.
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Tree depth-first search (DFS)

- There are three variants of DFS for trees: preorder, inorder, and postorder
- For binary (2-ary) trees, these are defined as follows:
- Preorder DFS traversal: current node — left subtree - right subtree
- Inorder DFS traversal: left subtree - current node - right subtree
- Postorder DFS traversal: left subtree — right subtree — current node

Inorder e Postorder
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Preorder
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Tree breadth-first search (BFS)
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Implementing tree traversals

- Tree depth-first search (DFS)

- Recursively by implicitly using the call stack (we have been here beforel)

- lteratively using a stack explicitly: Last-In First-Out (LIFO) data structure
Tree breadth-first search (BFS)

- Iteratively using a queue explicitly: First-In First-Out (FIFO) data structure
- Recursively passing a list with the nodes at current depth
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lterative Tree DFS (pseudocode)

SENE

N o ok

Create an empty stack of tree nodes

Push the root node into the top of the stack

If stack is empty, STOP. If stack not empty, pop from stack the node at the top of the stack. Let us
refer to the node at the top of the stack as “current node”

Process current node value (e.g., print its value on screen)

If right child of current node exists, push right child to the top of the stack

If left child of current node exists, push left child to the top of the stack
Gotostep 3

Let us code iterative tree DFS ...

...
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lterative Tree DFS (illustration)

0
1

Pre-order DFS traversal
abdecf
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Stack [ ]: push onto end, pop off end

DFS: pop node, push its children, repeat

[a]

[] a
[c]

[c b]

[c] b
[c el

[c e d]
[c e] d
[c] e
[] c
[£]

[] f
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Exercise (take away)

Modify the preorder iterative DFS algorithm such that it performs:
(1) Iterative inorder DFS traversals
(2) lterative postorder DFS traversals
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lterative Tree BFS (pseudocode)

SRS

N o o s

Essentially the same dynamics as DFS but using a queue instead of a stack

Create an empty queue of tree nodes

Enqueue the root node into the tail of the queue

If queue is empty, STOP. If queue not empty, dequeue the node at the head of the queue.
refer to the node at the top of the queue as “current node”

Process current node value (e.g., print its value on screen)

If left child of current node exists, enqueue left child to the top of the queue

If right child of current node exists, enqueue right child to the tail of the queue
Gotostep 3

Let us code iterative tree BFS ...
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Queue { }: enqueue onto back, dequeue off front

BFS: dequeue node, enqueue it’s children, repeat

0 eng a: {a}
1 deqg: {} a
enqg b: {b}
eng c: {b c}
2 deq: {c} b
eng d: {c d}
enqg e: {c 4d e}
3 deqg: {d e} c
enqg f: {d e £}
BFS traversal 4 deq: {e £} d
abcdef > degq: {£} e
6 deq: {} f
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Graphs
(BFS and DFS)




Graphs

- A graphis a powerful abstraction in computing and mathematics which consists of a
finite set of vertices V (a.k.a. nodes) and a finite set of edges E (a.k.a. links)
interconnecting those vertices

- Just as trees, graphs can be either undirected (left) or directed (right)
Directed graph

V =1{A4,B,C,D} V={A,B,C,D}

E ={(A4,B),(4,0),(B,A4),(B,0), E ={(4,D),(B,A),
(B,D),(C,A),(C,B),(D,B)} (B,C),(B,D)}

- Vast array of applications: transportation networks, computer networks,
epidemiology and disease spread, supply chain management, geographic
information systems (GIS), bioinformatics, parallel computing, and a large etc.
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Graphs and trees

In contrast to trees, graphs do not have a root
vertex (node). Thus, there is no natural node
from which to start the traversals

Besides, nodes may have multiple parents or no
parents at all

While in trees there is a single path from the
root to any other node, in a graph there might
be multiple paths among a pair of nodes, or no
paths at all (graphs with at least a pair of nodes
for which there is not a path are called
disconnected)

Graphs can have cycles while trees cannot. A
cycle is a non-empty trail in which only the first
and last vertices are equal. A trail is a path from
two vertices with no repeated edge.
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Directed graph
with cycles
(e.g., A, D, B, A)

Directed graph
0 with multiple paths, e.g.,

\’ among 0 and 5
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Graph implementations
(some examples)

size = 3
capacity = 5

size = 0@
capacity = 5

size = 1
capacity =5

=. Nodes + ArrayList of references to neighbours

!

size = @
capacity = 5

. QS 0 : PRV12002 (AUSTRALIAN UNIVERSITY)
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Graph implementations
(some examples)

vertex identifiers

/f neighbours of vertex 3
[ [11, [1, [], [[GNEN2]

{ @: “A,,, 1: “D,,, 2: ((C).’, {
value associated to vertex 3

Adjacency lists with vertex identifiers + Map from vertex identifiers to values

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
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Graph implementations
(some examples) 3

Vertex (0] 1 2 3
ID
0 false true false false
1 false false false false \ O
2 false false false false o adjaqency ma‘trix 1
; p” Ali,j] is true iff there is an edge
t t t . .
rue e rue atse from vertexito]

{ @: “A”, 1: “D”, 2: “C”,

value associated to vertex 3

Adjacency matrix with vertex identifiers + Map from vertex identifiers to values

. QS 0 : 2002 (AUS SITY)
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Graph traversals (DFS and BFS)

21

1.

2.

Just as with trees, there are multiple ways to traverse a graph (recap: to visit all nodes
exactly once in a certain order)

As with trees, two common traversals are DFS and BFS
However, two key differences:

One needs to select an initial vertex from which to start the traversal (typically
depends on the problem to be solved)

There is the need to keep track of vertices that have been already been “touched”
(i.e., seen during the process) to avoid (1) visiting a node more than once; (2) cycling
indefinitely (infinite loops)
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lterative graph BFS (pseudocode)

1.
2.
3

22

Create an empty queue of vertices and an empty set of touched vertices

Enqueue the initial vertex at the tail of the queue, and add it to the set of touched vertices

If queue is empty, STOP. If queue not empty, dequeue the vertex at the head of the queue. Let us
refer to the vertex at the head of the queue as “current vertex”

Process current vertex value (e.g., print its value on screen)

Enqueue all non-touched neighbours of current vertex at the tail of the queue, and add them to the
set of touched nodes
Gotostep 3

0)
/ Q Very nice visualizations
1 He of the algorithm for different
\ graphs can be seen [here]

4
O Source: Prof. Galles at USFCA

...
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https://www.cs.usfca.edu/~galles/visualization/BFS.html

Shortest paths problem

Given a vertex, find shortest paths from that vertex to every other vertex in the graph

- Thelength (a.k.a. cost) of a path among two vertices is the number of edges in the path

- Picture below shows shortest paths from vertex O to every other vertex (this forms a tree called the
shortest-path tree)

BFS is very well suited to find shortest
path lengths as it visits the vertices

in depth order. This ensures that shortest
path to any node is found first than any
other longer path

Let us code iterative BFS ...

&)..
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lterative graph DFS (pseudocode)

SRS

24

Essentially the same dynamics as BFS but using a stack instead of a queue

Create an empty stack of vertices and an empty set of touched vertices

Push the initial vertex into the top of the stack, and add it to the set of touched vertices

If stack is empty, STOP. If stack not empty, pop from stack the vertex at the top of the stack. Let
us refer to the vertex at the top of the stack as “current vertex”

Process current vertex value (e.g., print its value on screen)

Push all non-touched neighbours of current vertex to the top of the stack, and add them to the set
of touched vertices

Gotostep 3

Let us code iterative DFS ...

...
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Exercise (take-away)

Implement DFS graph traversal using recursion

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Weighted Graphs
(Dijkstra algorithm)

[Distinction-Level Content]
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Welghted graphs

A weighted graph is a special kind of graph in which every edge is associated a weight
- The weight associated to an edge is typically a non-negative number (e.g., int or float) that
models the cost of travelling across an edge (in the direction of the edge)

- For example, in the graph below, the weight associated to edge connecting vertex O and 2 is 6

5




Shortest paths problem (weighted graphs)

5

0
1
2
3
4
5
6
7

Given a vertex, find shortest paths from that vertex to every other vertex in the graph

The length (a.k.a. cost) of a path among two vertices is the sum of weights of the edges in the path
Picture and table below show shortest paths from vertex O to every other vertex (this forms a tree
called the shortest-path tree)

s

empty path
0-1
0-2
0-3
0-»>2-4
0->2-4-56-5
0-2-4-6

0-3-7




Dijkstra algorithm for shortest paths problem

(pseudocode)

Create a set of vertices for which we do not know yet a shortest path from the start vertex. Put all

vertices in the graph into this set. Let us refer to this set as the “unknown vertices set”

Assign to every vertex in the graph an initial path length. In particular, the initial vertex is assigned

aninitial path length of O, and every other vertex different from the initial vertex, an initial path

length of oo (infinity)

Select from the “unknown vertices set” the vertex with the smallest path length. Let us refer to
this vertex as to the “current vertex”. If the “unknown vertices set” is empty, or it only contains

vertices with infinite path lengths, STOP

For all neighbours of the current vertex which are in the “unknown vertices set”, calculate the
length of the path from the start vertex to the neighbour through current vertex. If the length of

this path is smaller than the one currently known for that neighbour, update the length of the path

for the neighbour. Otherwise, keep its current length

Remove the current vertex from the “unknown vertices set”

Go to step 3

29
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Dijkstra algorithm (step by step)

818|8|8|8|8|8]|o

0
1
2
3
4
5
6
.

0,1,23,4,56,7




Dijkstra algorithm (step by step)

find smallest path
length from vertices in
unknown vertices set

8 8 8 8 8 8 8 o

0
1
2
3
4
5
6
.

0,1,23,4,56,7




Dijkstra algorithm (step by step)

Vertex O found

8188|888 |8 o

0
1
2
3
4
5
6
.

0,1,23,4,56,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex O

O+7/ <0 ?

8188|8888 ©

0
1
2
3
4
5
6
7

0,1,23,4,56,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex O

0+6 <0 ?

8|18 |8 |8 |88 ~wl o

0
1

2
3
4
5
6
7

0,1,23,4,56,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex O

O+5<o0?

8|8 |8 |88 o|lwlo

0
1

2
3
4
5
6
7

0,1,23,4,56,7




Dijkstra algorithm (step by step)

remove vertex O from
the unknown vertices set

818 |8 |8 |lvmn|lo|N|o

0
1

2
3
4
5
6
7

0,1,23,4,56,7




Dijkstra algorithm (step by step)

find smallest path
length from vertices in
unknown vertices set

8 8 8 8 w o ~N o

0
1

2
3
4
5
6
7

1,2,3,4,56,7




Dijkstra algorithm (step by step)

vertex 3 found

818 |8 |8 T oo|N|O

0
1

2
3
4
5
6
7

1,2,3,4,56,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 3

5+6 <0 ?

8|8 I8 8T oo|l | O

0
1

2
3
4
5
6
7

1,2,3,4,56,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 3

5+8 <0 ?

N~Njo| o~ IN|—=]|O




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 3

5+8 <0 ?

N~Njo| o~ IN|—=]|O




Dijkstra algorithm (step by step)

remove vertex 3 from
the unknown vertices set

2|8 lon|lo|N|o

8

0
1
2
3
4
5
6
7

@

1,2,3,4,56,7




Dijkstra algorithm (step by step)

find smallest path
length from vertices in
unknown vertices set

0
1
2
3
4
5
6
.

1,2,4,5,6,7




Dijkstra algorithm (step by step)

vertex 2 found

=8 ol N| o

8

0
1
2
3
4
5
6
7

@

1,2,4,5,6,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 2

vertex O already
known (do nothing)

0
1
2
3
4
5
6
.

1,2,4,5,6,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 2

6+3 <00?

0
1
2
3
4
5
6
.

1,2,4,5,6,7




Dijkstra algorithm (step by step)

remove vertex 2 from
the unknown vertices set

wlLilwinvM|ojlo|lo | L

0
1
2
3
4
5
6
7

1,2,4,5,6,7




Dijkstra algorithm (step by step)

find smallest path
length from vertices in
unknown vertices set

N~Njo| o~ IN|—=]|O
wlLilwinvM|ojlo|lo | L




Dijkstra algorithm (step by step)

vertex 1 found

wlLilwinvM|ojlo|lo | L

0
1
2
3
4
5
6
7

1,4,56,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 1

vertex 2 already
known (do nothing)

N~Njo| o~ IN|—=]|O
wlLilwinvM|ojlo|lo | L




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 1

7+8 <117

N~Njo| o~ IN|—=]|O
wlLilwinvM|ojlo|lo | L




Dijkstra algorithm (step by step)

remove vertex 1 from
the unknown vertices set

wlLilwinvM|ojlo|lo | L

0
1
2
3
4
5
6
7

1,4,56,7




Dijkstra algorithm (step by step)

find smallest path
length from vertices in
unknown vertices set

N~Njo| o~ IN|—=]|O
wlLilwinvM|ojlo|lo | L




Dijkstra algorithm (step by step)

Vertex 4 found

wlLilwinvM|ojlo|lo | L

0
1
2
3
4
5
6
7

4,5,6,7




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 4

O9+1 <0 ?

N~Njo| o~ IN|—=]|O
wlLilwinvM|ojlo|lo | L




Dijkstra algorithm (step by step)

remove vertex 4 from
the unknown vertices set

N~Njo| o~ IN|—=]|O
WwlhrhlwWwIMM|O|JlO|O | L




Dijkstra algorithm (step by step)

find smallest path
length from vertices in
unknown vertices set

N~Njo| o~ IN|—=]|O
WwlhrhlwWwIMM|O|JlO|O | L




Dijkstra algorithm (step by step)

Vertex 6 found

N~Njo| o~ IN|—=]|O
WwlhrhlwWwIMM|O|JlO|O | L




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 6

vertex 2 already
known (do nothing)

N~Njo| o~ IN|—=]|O
WwlhrhlwWwIMM|O|JlO|O | L




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 6

vertex 4 already
known (do nothing)

N~Njo| o~ IN|—=]|O
WwlhrhlwWwIMM|O|JlO|O | L




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 6

10+0 <117

N~Njo| o~ IN|—=]|O
WwlhrhlwWwIMM|O|JlO|O | L




Dijkstra algorithm (step by step)

remove vertex 6 from
the unknown vertices set

N~Njo| o~ IN|—=]|O
wlrdloolpM|O|lO|O | L




Dijkstra algorithm (step by step)

remove vertex 6 from
the unknown vertices set

N~Njo| o~ IN|—=]|O
wlrdloolpM|O|lO|O | L




Dijkstra algorithm (step by step)

find smallest path
length from vertices in
unknown vertices set

N/ ol ol W N —=|O
wlrdloolpM|O|lO|O | L




Dijkstra algorithm (step by step)

vertex 5 found

wlrdloolpM|O|lO|O | L

0
1
2
3
4
5
6
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Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 5

vertex 1 already
known (do nothing)

N/ ol ol W N —=|O
wlrdloolpM|O|lO|O | L




Dijkstra algorithm (step by step)

remove vertex 5 from
the unknown vertices set

N~Njo| o~ IN|—=]|O
wlrdloolpM|O|lO|O | L




Dijkstra algorithm (step by step)

find smallest path
length from vertices in
unknown vertices set

N~Njo| o~ IN|—=]|O
wlrdloolpM|O|lO|O | L




Dijkstra algorithm (step by step)

vertex 7 found

wlrdloolpM|O|lO|O | L

0
1
2
3
4
5
6
.




Dijkstra algorithm (step by step)

updating path
lengths of neighbours
of vertex 7

vertex 5 already
known (do nothing)

N/ ol ol W N —=|O
wlrdloolpM|O|lO|O | L




Dijkstra algorithm (step by step)

remove vertex 7 from
the unknown vertices set

N~Njo| o~ IN|—=]|O
wlrdloolpM|O|lO|O | L




Dijkstra algorithm (step by step)

Unknown vertices set
is empty - STOP

N~Njo| o~ IN|—=]|O
wlrdloolpM|O|lO|O | L
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