

BFS or DFS?

-] Australian
==/ National

\

<=7 University

8chool of Computing | COMP1110/6710 2025 St 6/05/2025

BFS or DFS?

-

3 School of Computing | COMP1110/6710 2025 S1 6/05/2025 gER?CS;SPPR%\OFDEERRIgD PDREWDZOO]DZ% l(;\LISTRALIAN UNIVERSITY)

B FS or D FS’) Nodes on DFS stack, worst case

- Up to branching factor * depth
- For binary tree, O(d) = O(log n)
d...depth of tree, n... #nodes in tree

—
——
—
=

. TEQSA PRO! 3
4 School of Computing | COMP1110/6710 2025 S1 6/05/2025 TEae oAs pRO\(/HIJDEERRIEéDr;REYEOO]OZZO l(;\LISTRALIAN UNIVERSITY)

BFS or DFS’) Nodes in BFS queue, worst case

- Up to width of tree
- For binary tree: O(n), generally
O(b?) - can be very large
n...#nodesin tree, d ... depth of tree
b ... branching factor

This assumes that you do not need to keep track of where you came from,
though with a branching factor > 2, #past nodes < #next nodes -

. Qs, 0 : PRV12002 (AUSTRALIAN UNIVERSITY)
5 School of Computing | COMP1110/6710 2025 S1 6/05/2025 <T:Ee s &PPRRO\CIIJLEERRI@OF;RE\:/ AAAAAAAAAAAAAAAAAAAAA

BFS or DFS?

Depth DES BFS

1 1 1
Maximum Stack/Queue Size for 2 2 2
binary trees 3 3 4

4 4 8

5 5 16

§) §) 32

/ ! 64

8 8 128

9) 256

. Qs, 0 : PRV12002 (AUSTRALIAN UNIVERSITY)
6 School of Computing | COMP1110/6710 2025 S1 6/05/2025 éi s C?SPPRRO\(/”IJDEERRIgOPDRE\:I AAAAAAAAAAAAAAAAAAA

BFS or DFS?

Default recommendation: recursive DFS
Where trees get deep: switch to iteration
Reasons to go to BFS:

- Distance from start matters

- Treeis deep, but goal is likely close

- Special case: tree may be infinitely deep, so goal, if it exists, is
always relatively close, but may be on a different branch

=» BFS ensures an “even” search

ine | COMP1110/6710202?5%1 ... B/05/2025 @ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
7 School of Computing | COMP1110/6710 2025 St 6/05/20256 L R e ooe

Sets, Maps,
and Hashing

One Weird Trick to get to O(1)...ish

Recall: BFS/DFS

explore(Node n) {
remaining = new Queue/Stack<>(); remaining.add/push(n);
seen = new List?<>(); seen.add(n);

while(!remaining.isEmpty()) { O(n)
current = remaining.dequeue/pop();
for(n : current.neighbours) { O(n)

if(!seen.contains(n)) { 277

remaining.add/push(n); seen.add(n);

¥
}}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
OOOOOOOOOOOOOOOOOOOOOOOO

Implementing “Contains”

|deas?
- List: linear scan - O(n)
- Sorted Array: binary search: O(log n)

Can we do better?

. Qs, 0 3
10 School of Computing | COMP1110/6710 2025 S1 6/05/2025 gERIC;SPPRROVVHIJDEERRIgor;RE\:nozg]% AAAAAAAAAAAAAAAAAAAA

Why Linear Scan or Binary Search?

Because we don’t know where in the list/array an element should be.

In a sorted list/array, the position in the list/array depends on what
other unknown things are in the list/array.

In an unsorted list/array, the position is completely arbitrary.

n School of Computing | COMP1110/6710 2025 St 6/05/2025 ~ TEQSA PROVIDERID; : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

)ﬂ}))

3 AemgEERY 9=
Mo i sbte A

2
o

1 e ")
m»: A5
: »

TOP

SEND ITEM DE...
FIND IN LIBRA...
DETAILS

LINKS
REQUESTITF...

VIRTUAL BRO...

School of Computing |

BOOK

How to design programs : an introduction to programming and computing
Felleisen, Matthias.

c2001

Available at Hancock General (QA76.6 .H697 2001)

Send item details

N Taug! =
” 9 | &, =
EXPORTTO CITATION PERMALINK EMAIL QR PRINT

EXCEL

Find in Library

EXPORTRIS

Please sign in to check if there are any request options. -E| Signin

< BACK TO LOCATIONS
LOCATION ITEMS

Hancock
Available, General ; QA76.6 .H697 2001
(1copy, 1 available, 0 requests)

Available Material Type: Book
Loanable | gcation: Hancock General QA76.6 .H697 2001
Barcode: 2493693

Details
Title How to design programs : an introduction to programming and computing
Creator Felleisen, Matthias. >
Subject Computer programming >
Electronic data processing »
Publisher Cambridge, Mass. : MIT Press
Creation Date c2001
Format xxx. 693 p.:ill.: 24 cm.
COMP1110/6710 2025 St 6/05/2025

Y =

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

BOOK

How to design programs : an introduction to programming and cor
Felleisen, Matthias.

/| Available at Hancock General (QA76.6 .H697 2001)

Send item details

i QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY) =
School of Computing | COMP1110/6710 2025 S1 6/05/2025 éi s C?SPPRRO\(/”IJDEERRIgOPDRE\:I AAAAAAAAAAAAAAAAAAA

Hancock Library floor plan

BASEMENT LEVEL LEVEL LEVEL

To West Wing Level 1
Social Zone

> Moderate conversation levels
> Considerate mobile phone use
> No music audible to others

Quiet Zone

> Subdued conversation

> Considerate mobile use
away from study areas

> No music audible to others

S —— /
Ealecd SILENT ZONE WEST WING
EAST WING Silent Zone
\ > No conversation
> Mobile phones on silent
STUDY AREA > No music audible to others
COMPUTER AREA
STUDY AREA STUDY AREA
P

SILENT ZONE SILENT ZONE

SOCIAL ZONE

Muiti-Functional Device (MFD)

Library catalogue
[Fomaio oien
[vao toiet

Stairs/entrance

Schc Feb 2021 - Special needs toilet

SILENT
ZONE

SILENT ZONE

WEST WING*
EAST WING.

5 OPERATING SYSTEMS
Structures and A+

,‘
e +uie Dosigy

e Pragmatic

HOW TO DESIGN PROGRAMS
Felleisen, Pindler, Farr, and Krishnamurihi

Mamna The Temporal Logic of Reactive
Pusli and Concurrent Systems

“OUN e " o TG
Functional Programm fication and I
§ ool ing App! imple
| Gres HE SciENGE oF PROG
; G i

¥ e L
Tl | e
FD PROOFS AND TYPES

ﬂolu.oozm;:.m» - EFFiC

_v Functional Programming &

DAMSTRA FORMAL DEVELOPMENT OF PROOR

The Computational Beauty of Nature

2002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

TEQSA PROVIDER ID: PRV

6/05/2025

1%}
re}
[
=}
«
=4
=
©
Q
=]
a
=
o
o

School of Computing

ﬁ. GIBBONS & RYTTER

%. GAREY / JOHNSON COMPUTERS A
¥ A Guide to tl eory of

“...:_E.___ Programming &:jts ____ _

g S —— e ("\l’

— L ———

DIKSTRA FORMAL DEVELOPMENT

FUNCTIONAL PROGRAMMING

F =,

OO —

STRUCTURED PROGRAI

An _::oacn:c: to Operating Systems
Edition

INTRODUCTION TO
ALGORITHMS
EDITION
CORMEN
LEISERSON
RIVEST
STEIN

WY g < o —— - -
i QETWARE PROJKS

Deitel

a
£
S
(&}
u=
o
<]
<]
<
3]
(%]

, s s Gt G
ﬁu OPERATING SYSTEMS

E3 Structures and Mechanisrs
}f o
|

NTER

=1l Pr

A COLLECTION OF PROGRAMMING PROSL

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

The Temporal Logic of Reactive
and Concurrent Systems

{7GIRARD PROOFS AND TYPES

T GBIONS&RITTER || -
v Functional 13::.._:__-_- its ___%

6/05/2025

CumsTA FORAAL DEVELOPMENT OF PROGRANS AJd

The Computational Beauty of Nature Flake

FUNCTIONAL PROGRAMMING

0
o
3
o
2
=]
~
©
=
=)
a
=
Q
o

School of Computing |

A Library (in principle)

Each book has a specific location
If you borrow a book, all the other books don’t move
If you return a book, all the other books don’t move

There is some additional empty space for when the library acquires
new books

Once in a while (very rarely), things get reorganized

= Adding, Finding, and Removing a book does not need a great deal of
searching

20

ine | COMP1110/6710202?5%1 ... B/05/2025 @ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
School of Computing | COMP1110/6710 2025 St 6/05/20256 L R e ooe

In a Computer

If you have an array, and know an index into it, access is O(1)

-> If we can assign every object a yniere® identifier, and have an array
big enough for all them, we can access their slot instantly

Objects are much more short-lived than books - lots of empty space

Needs as much space as the rest of the program for every array

Lookup should be able to find objects that are equal, but not
necessarily the same object (==)

21 School of Computing | COMP1110/6710 2025 St 6/05/2025 ~ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) =

OOOOOOOOOOOOOOOOOOOOOOOO

hashCode

An int value for every object.
232 (~4 billion) possible values.

Remember: longs have 2% possible values, so there are 4 billion longs
for every possible hashCode. That’s fine, it does not have to be unique.

22 School of Computing | COMP1110/6710 2025 St 6/05/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

hashCode

Object implements hashCode based on an object’s address in memory:

jshell> Object o=new Object()
o0 ==> java.lang.Object@34033bd0

jshell> o.hashCode()
S2 ==> 872627152 Hex 34033bd0 = Dec 872627152

CRICOS PROVIDER CODE: 00120C

Still a Large Array?

4 billion entries would be a lot. But now that we accept collisions,
what’s a few more?

=» Pick a more reasonable size for your array (depending on how much
data you have). Then take the (positive) remainder of dividing the hash

code by the array size.

ine | COMPI110/671020251 ... B/0O5/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
24 School of Computing | COMP1110/6710 2025 S1 6/05/20256 L R e ooe

HashMap Key ldea

=

n
o

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

© 0 XN kw9

School of Computing | COMP1110/6710 2025 S1 6/05/2025

new HashMap<>(); «

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap Key ldea

o

n
(]

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

© 0 XN kw9

“Hello”

School of Computing | COMP1110/6710 2025 S1 6/05/2025

new HashMap<>();

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap Key ldea

o

n
N

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

© 0 XN kw9

“Hello” S}

School of Computing | COMP1110/6710 2025 S1 6/05/2025

new HashMap<>();

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap Key ldea

o

n
©

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

© 0 XN kw9

“Hello” S}

School of Computing | COMP1110/6710 2025 S1 6/05/2025

new HashMap<>();

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap Key ldea

e.g. Array Size: 11

-

N
©

Integer i = 5;

map.put(s, i);

“Hello” S}

© 0Nk O

School of Computing | COMP1110/6710 2025 St

“Hello”.hashCode() = 69609650

% 11 =0 - idx

HashMap<String, Integer> map =
String s = “Hello”;

map.containsKey(s);

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val;
key;
val;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

...

HashMap Key ldea

e.g. Array Size: 11

-

w
o

Integer i = 5;

map.put(s, i);

“Hello” S}

© 0Nk O

School of Computing | COMP1110/6710 2025 St

“Hello”.hashCode() = 69609650

% 11=0 - idx

HashMap<String, Integer> map =
String s = “Hello”;

map.containsKey(s);

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val; null
key;
val;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

-

...

HashMap: Key ldea

-

<

[@

“Hello”.hashCode() = 69609650

% 11=0 - idx

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;
map.put(s, i);

map.containsKey(s);

© 0Nk O

“Hello” S}

School of Computing | COMP1110/6710 2025 St

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val; null
key;
val;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

-

H asS h M d p Key Id €a “Hello”.hashCode() = 69609650

o

w
N

[@

Q

\

© 0Nk O

School of Computing | COMP1110/6710 2025 St 6/05/2025 ~ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)

0 — '
e.g. Array Size: 11 o 11=0 = dx

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

Object put(String key, Integer val) {

“Hello” S}

var old = arr[idx].val; null
arr[idx].key = key;
arr[idx].val = val;

return old;

int idx = key.hashCode()%size;

CRICOS PROVIDER CODE: 00120C

HashMap: Key ldea

-

w
w

[@

Q

\

© 0Nk O

“Hello”.hashCode() = 69609650

% 11=0 - idx

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;
map.put(s, i);

“Hello” S}

School of Computing | COMP1110/6710 2025 St

map.containsKey(s);

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val; null
key;
val;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap: Key ldea

-

w
>

[@

Q

\

© 0Nk O

“Hello”.hashCode() = 69609650

% 11=0 - idx

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;
map.put(s, i);

“Hello” S}

School of Computing | COMP1110/6710 2025 St

map.containsKey(s);

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val;
key;
val;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap: Key ldea

=

w
o

19| R e.g. Array Size: 11

\

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

© 0 XN kw9

“Hello” S}

School of Computing | COMP1110/6710 2025 S1 6/05/2025

new HashMap<>();

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap: Key ldea

-

w
(]

[@

Q

\

© 0Nk O

e.g. Array Size: 11

“Hello”.hashCode() = 69609650
% 11 =0 - idx

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;

Integer i = 5;
map.put(s, i);

“Hello” 5

School of Computing | COMP1110/6710 2025 St

map.containsKey(s);

boolean containsKey(String key) {

int idx = key.hashCode()%size; «
if(arr[idx] == null) return false;
return arr[idx].key.equals(key);

}

6/05/2025 ~ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Hash Collisions

Many Objects will have the same hash code. Taking the remainder to
get a smaller number increases the number of collisions further.

Many solutions, but simplest one is to have each entry point to a linked
list - a “bucket”, which can contain multiple entries mapped to the
same index. The equals method distinguishes between the keys.

ine | COMPI110/671020251 ... B/0O5/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
37 School of Computing | COMP1110/6710 2025 S1 6/05/20256 L R e ooe

HashMap

R

38

ele

School of Computing |

“Hello”

COMP1110/6710 2025 S1

6/05/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap

R

39

O—>

School of Computing |

“Hello”

COMP1110/6710 2025 S1

6/05/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap 4035 69609650 1020

=

IN
o

69609650

© 0 XN kw9

b AL diangl AL Alapgl JL AL o

L o o
\ A / \ A / A A /

Same hashes will always end up
in same bucket - hopefully unlikely

Different hashes may be put in same
bucket by taking remainder - resizing
the array means they can move.

School of Computing | COMP1110/6710 2025 S1 6/05/2025

“Hello”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

HashMap 69600650

© 0 XN kw9

=

S

69609650

® > ®|®|O®

11
\ A /

A rare reorganization. Hashes

still let you find buckets instantly,

just based on a different divisor.

1020
o o[®
o -~ [0 VoY

11
v ¢ 4035

School of Computing | COMP1110/6710 2025 S1 6/05/2025

“Hello”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

wm OPERATING SYSTEMS
< Structures and Mechanisms

,

PROGRAMS
. Pindler, Flatt, and Krishnamurdhi

The Computational Beauty of Nature Flake

FUNCTIONAL PROGRAMMING

A COLLEGTION OF PROCRANMING PROLEM:

The Temporal Logic of Reactive
and Concurrent Systems

CONPUTATONALCOVPE

d Kronsi® e ENTIAL ol

2002 (AUSTRALIAN UNIVERSITY)
oc

TEQSA PROVIDER ID: PRV
CRICOS PROVIDER CODE: 00120t

6/05/2025

| COMP1110/6710 2025 St

School of Computing

HashSet

A concrete implementation of Abstract Data Type “Set”, which is a list
without ordering or multiple entries of the same element.

- Add/Remove
- Check Membership

- |terate through elements, in some arbitrary order

In Java, implementation based on HashMap - simply ignore the
associated values.

ine | COMPI110/671020251 ... B/0O5/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
43 School of Computing | COMP1110/6710 2025 S1 6/05/20256 L R e ooe

Time Complexity

Depends on implementation.

For local linked lists, key operations (put, get, remove, containsKey) on
average constant, but not quite O(1).

Better implementations can do O(1); in any case, we typically treat
those operations as constant.

Overall analysis is complicated = more advanced courses.

Key requirement: a good hash function

ine | COMPI110/671020251 ... B/0O5/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
44 School of Computing | COMP1110/6710 2025 S1 6/05/20256 L R e ooe

Hash Functions
and Equality

-] Australian
==/ National
<=7 University

8bhool of Computing | COMP1110/67102025 St 6/05/2025

Recap: equals vs. ==

== compares object identity, i.e. are left and right the same thing on the
heap? Cannot be changed.

equals has a default implementation as ==, but can be overridden.
Many standard library classes do this, and you can, too.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
OOOOOOOOOOOOOOOOOOOOOOOO

Overriding Equals

Generally, you want to compare the

class Person { values of relevant fields.
String firstName;
String lastName; records do this automatically.
@Override

boolean equals(Object other) {
if(other instanceof Person p) {
return firstName.equals(p.firstName) &&
lastName.equals(p.lastName);

¥

return false;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

...

Expectations on Equals

- Reflexive (every object is equal to itself)

- Transitive (A equals B and B equals C = A equals C)

- Symmetric (A equals B <> B equals A)

- Stable results (may change if relevant fields have changed)

- Consistent with results of Comparable<T>.compareTo (if applicable)
and hashCode
- A.compareTo(B) == 0 < A.equals(B)
- A.equals(B) = A.hashCode() == B.hashCode()

Key Concept in Computing/Logic: Implication (=) # Equivalence (<)

)ﬁ}) =

ine | COMP1110/6710202?5<1 . 8/05/2025 @ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
48 School of Computing | COMP1110/6710 2025 S1 6/05/2025 O OROVIDER GOpE - 00120C

What's a Good Hash Function?

class Person {

49

String firstName;
String lastName;

@Override
int hashCode() {
return 9;

¥

School of Computing | COMP1110/6710 2025 St

Valid:
Since all objects have the same hash code,
it is guaranteed to be equal for equal objects.

Not Good:

Destroys good HashMap properties - everything
will always go into the same bucket!

)ﬂ}) =

6/05/2025 ~ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

What’s a Good Hash Function?

class Person {

50

String firstName; Valid:

String lastName; Since all objects with the same firstName length
have the same hash code, it is guaranteed to be
@Override equal for equal objects.

int hashCode() {
return firstName.length();

¥

Not Good:

Maps most plausible values to very small subset
of possible integers. Still very large buckets.

)ﬁ}) =

School of Computing | COMP1110/6710 2025 St 6/05/2025 ~ TEQSA PROVIDERID; : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

What's a Good Hash Function?

51

General Criteria:

- Evenly distributes results across range (in Java: ~4 billion int values)
- Sensitive to small changes

e.g. “squeak” and “quakes” should have different hashes
- Cheap to compute

A perfect hash function maps every input to a unique value.
Sometimes possible, but rare.

Domain knowledge and application-specific tradeoffs make a huge
Difference!

School of Computing | COMP1110/6710 2025 St 6/05/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

)ﬂ}) =

What's a Good Hash Function?

General Recipe (from “Effective Java” by Josh Bloch):
@Override

. Why 317
1n’F hashCode() { Generally, with modulo, odd primes
int result = 0; are the best choice to ensure coverage.
for (var field : fields) f{ Very different from numbers people
var x = field.hashCode(); would choose (powers of 10 or 2).

result = 31 * result + x;

}

. Makes room in accumulator so x can influence result and
return result;

field values don’t just cancel each other out

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
52 School of Computing | COMP1110/6710 2025 S1 6/05/2025 gERICLZ?SPPRRO\(/”IJDEERRIgOPDRE\:I AAAAAAAAAAAAAAAAAAAAAAA

Another Way to Look at Hashes

Comparing objects can be expensive. E.g., for two graphs to be equal,
they need the same vertices and edges. Two graphs might only differ in
one edge, and thus are different, but you need to find that edge first.

Often, you can store a hash code in an object after computing it for the
first time. It’s then a cheap way to pre-check equality. If the hashes of
two objects are different, then the objects must not be equal. Integer
comparisons are cheap. Since most objects aren’t equal, that’s a lot of
work you can save this way.

ine | COMP1110/6710202?5<1 . B8/05/2025 @ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
53 School of Computing | COMP1110/6710 2025 ST 6/05/2025 O OROVIDER GODE: boidac

Uses of Hash Codes

54

Hash Tables
Cheaper Equality Comparisons / Checksums

In Programs
Of Files
Of Messages / Network Packets

Blockchains / Cryptography / Digital Signatures: note - harder requirements on “good” hash functions

A

)

School of Computing | COMP1110/6710 2025 St 7/05/2025 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

	1A
	Slide 1
	Slide 2: BFS or DFS?
	Slide 3: BFS or DFS?
	Slide 4: BFS or DFS?
	Slide 5: BFS or DFS?
	Slide 6: BFS or DFS?
	Slide 7: BFS or DFS?
	Slide 8: Sets, Maps, and Hashing
	Slide 9: Recall: BFS/DFS
	Slide 10: Implementing “Contains”
	Slide 11: Why Linear Scan or Binary Search?
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: A Library (in principle)
	Slide 21: In a Computer
	Slide 22: hashCode
	Slide 23: hashCode
	Slide 24: Still a Large Array?
	Slide 25: HashMap: Key Idea
	Slide 26: HashMap: Key Idea
	Slide 27: HashMap: Key Idea
	Slide 28: HashMap: Key Idea
	Slide 29: HashMap: Key Idea
	Slide 30: HashMap: Key Idea
	Slide 31: HashMap: Key Idea
	Slide 32: HashMap: Key Idea
	Slide 33: HashMap: Key Idea
	Slide 34: HashMap: Key Idea
	Slide 35: HashMap: Key Idea
	Slide 36: HashMap: Key Idea
	Slide 37: Hash Collisions
	Slide 38: HashMap
	Slide 39: HashMap
	Slide 40: HashMap
	Slide 41: HashMap
	Slide 42
	Slide 43: HashSet
	Slide 44: Time Complexity
	Slide 45: Hash Functions and Equality
	Slide 46: Recap: equals vs. ==
	Slide 47: Overriding Equals
	Slide 48: Expectations on Equals
	Slide 49: What’s a Good Hash Function?
	Slide 50: What’s a Good Hash Function?
	Slide 51: What’s a Good Hash Function?
	Slide 52: What’s a Good Hash Function?
	Slide 53: Another Way to Look at Hashes
	Slide 54: Uses of Hash Codes

