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B FS or D FS’) Nodes on DFS stack, worst case

- Up to branching factor * depth
- For binary tree, O(d) = O(log n)
d...depth of tree, n... #nodes in tree
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BFS or DFS’) Nodes in BFS queue, worst case

- Up to width of tree
- For binary tree: O(n), generally
O(b?) - can be very large
n...#nodesin tree, d ... depth of tree
b ... branching factor

This assumes that you do not need to keep track of where you came from,
though with a branching factor > 2, #past nodes < #next nodes -
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BFS or DFS?

Depth DES BFS

1 1 1
Maximum Stack/Queue Size for 2 2 2
binary trees 3 3 4

4 4 8

5 5 16

§) §) 32

/ ! 64

8 8 128

9 ) 256
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BFS or DFS?

Default recommendation: recursive DFS
Where trees get deep: switch to iteration
Reasons to go to BFS:

- Distance from start matters

- Treeis deep, but goal is likely close

- Special case: tree may be infinitely deep, so goal, if it exists, is
always relatively close, but may be on a different branch

=» BFS ensures an “even” search
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Sets, Maps,
and Hashing

One Weird Trick to get to O(1)...ish




Recall: BFS/DFS

explore(Node n) {
remaining = new Queue/Stack<>(); remaining.add/push(n);
seen = new List?<>(); seen.add(n);

while(!remaining.isEmpty()) { O(n)
current = remaining.dequeue/pop();
for(n : current.neighbours) { O(n)

if(!seen.contains(n)) { 277

remaining.add/push(n); seen.add(n);

¥
}}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Implementing “Contains”

|deas?
- List: linear scan - O(n)
- Sorted Array: binary search: O(log n)

Can we do better?

. Qs, 0 3
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Why Linear Scan or Binary Search?

Because we don’t know where in the list/array an element should be.

In a sorted list/array, the position in the list/array depends on what
other unknown things are in the list/array.

In an unsorted list/array, the position is completely arbitrary.
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How to design programs : an introduction to programming and computing
Felleisen, Matthias.

c2001
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BOOK
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A Library (in principle)

Each book has a specific location
If you borrow a book, all the other books don’t move
If you return a book, all the other books don’t move

There is some additional empty space for when the library acquires
new books

Once in a while (very rarely), things get reorganized

= Adding, Finding, and Removing a book does not need a great deal of
searching

20
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In a Computer

If you have an array, and know an index into it, access is O(1)

-> If we can assign every object a yniere® identifier, and have an array
big enough for all them, we can access their slot instantly

Objects are much more short-lived than books - lots of empty space

Needs as much space as the rest of the program for every array

Lookup should be able to find objects that are equal, but not
necessarily the same object (==)
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hashCode

An int value for every object.
232 (~4 billion) possible values.

Remember: longs have 2% possible values, so there are 4 billion longs
for every possible hashCode. That’s fine, it does not have to be unique.
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hashCode

Object implements hashCode based on an object’s address in memory:

jshell> Object o=new Object()
o0 ==> java.lang.Object@34033bd0

jshell> o.hashCode()
S2 ==> 872627152 Hex 34033bd0 = Dec 872627152

CRICOS PROVIDER CODE: 00120C



Still a Large Array?

4 billion entries would be a lot. But now that we accept collisions,
what’s a few more?

=» Pick a more reasonable size for your array (depending on how much
data you have). Then take the (positive) remainder of dividing the hash

code by the array size.
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HashMap Key ldea

=

n
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e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

© 0 XN kw9
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e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

© 0 XN kw9

“Hello”

School of Computing | COMP1110/6710 2025 S1 6/05/2025

new HashMap<>();

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C



HashMap Key ldea

o

n
N

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);
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e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);
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HashMap Key ldea

e.g. Array Size: 11
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N
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Integer i = 5;

map.put(s, i);

“Hello” S}

© 0Nk O
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“Hello”.hashCode() = 69609650

% 11 =0 - idx

HashMap<String, Integer> map =
String s = “Hello”;

map.containsKey(s);

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val;
key;
val;
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e.g. Array Size: 11
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Integer i = 5;

map.put(s, i);

“Hello” S}
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School of Computing | COMP1110/6710 2025 St

“Hello”.hashCode() = 69609650

% 11=0 - idx

HashMap<String, Integer> map =
String s = “Hello”;

map.containsKey(s);

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val; null
key;
val;
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HashMap: Key ldea
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“Hello”.hashCode() = 69609650

% 11=0 - idx

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;
map.put(s, i);

map.containsKey(s);
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“Hello” S}
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new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val; null
key;
val;
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e.g. Array Size: 11 o 11=0 = dx

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);

Object put(String key, Integer val) {

“Hello” S}

var old = arr[idx].val; null
arr[idx].key = key;
arr[idx].val = val;

return old;

int idx = key.hashCode()%size;
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HashMap: Key ldea
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“Hello”.hashCode() = 69609650

% 11=0 - idx

e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;
map.put(s, i);

“Hello” S}
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map.containsKey(s);

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;

6/05/2025

r[idx].val; null
key;
val;
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e.g. Array Size: 11

HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;
map.put(s, i);

“Hello” S}
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map.containsKey(s);

new HashMap<>();

Object put(String key, Integer val) {
int idx = key.hashCode()%size;

var old = ar

arr[idx].key =
arr[idx].val =

return old;
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r[idx].val;
key;
val;
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HashMap: Key ldea
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HashMap<String, Integer> map =
String s = “Hello”;

Integer i = 5;

map.put(s, i);

map.containsKey(s);
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e.g. Array Size: 11

“Hello”.hashCode() = 69609650
% 11 =0 - idx

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;

Integer i = 5;
map.put(s, i);

“Hello” 5
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map.containsKey(s);

boolean containsKey(String key) {

int idx = key.hashCode()%size; «
if(arr[idx] == null) return false;
return arr[idx].key.equals(key);

}
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Hash Collisions

Many Objects will have the same hash code. Taking the remainder to
get a smaller number increases the number of collisions further.

Many solutions, but simplest one is to have each entry point to a linked
list - a “bucket”, which can contain multiple entries mapped to the
same index. The equals method distinguishes between the keys.
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Same hashes will always end up
in same bucket - hopefully unlikely

Different hashes may be put in same
bucket by taking remainder - resizing
the array means they can move.
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HashMap 69600650
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A rare reorganization. Hashes

still let you find buckets instantly,

just based on a different divisor.
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HashSet

A concrete implementation of Abstract Data Type “Set”, which is a list
without ordering or multiple entries of the same element.

- Add/Remove
- Check Membership

- |terate through elements, in some arbitrary order

In Java, implementation based on HashMap - simply ignore the
associated values.
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Time Complexity

Depends on implementation.

For local linked lists, key operations (put, get, remove, containsKey) on
average constant, but not quite O(1).

Better implementations can do O(1); in any case, we typically treat
those operations as constant.

Overall analysis is complicated = more advanced courses.

Key requirement: a good hash function
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and Equality
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Recap: equals vs. ==

== compares object identity, i.e. are left and right the same thing on the
heap? Cannot be changed.

equals has a default implementation as ==, but can be overridden.
Many standard library classes do this, and you can, too.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Overriding Equals

Generally, you want to compare the

class Person { values of relevant fields.
String firstName;
String lastName; records do this automatically.
@Override

boolean equals(Object other) {
if(other instanceof Person p) {
return firstName.equals(p.firstName) &&
lastName.equals(p.lastName);

¥

return false;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
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Expectations on Equals

- Reflexive (every object is equal to itself)

- Transitive (A equals B and B equals C = A equals C)

-  Symmetric (A equals B <> B equals A)

- Stable results (may change if relevant fields have changed)

- Consistent with results of Comparable<T>.compareTo (if applicable)
and hashCode
- A.compareTo(B) == 0 < A.equals(B)
- A.equals(B) = A.hashCode() == B.hashCode()

Key Concept in Computing/Logic: Implication (=) # Equivalence (<)

)ﬁ}) =

ine | COMP1110/6710202?5<1 . 8/05/2025 @ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
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What's a Good Hash Function?

class Person {

49

String firstName;
String lastName;

@Override
int hashCode() {
return 9;

¥

School of Computing | COMP1110/6710 2025 St

Valid:
Since all objects have the same hash code,
it is guaranteed to be equal for equal objects.

Not Good:

Destroys good HashMap properties - everything
will always go into the same bucket!

)ﬂ}) =
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What’s a Good Hash Function?

class Person {

50

String firstName; Valid:

String lastName; Since all objects with the same firstName length
have the same hash code, it is guaranteed to be
@Override equal for equal objects.

int hashCode() {
return firstName.length();

¥

Not Good:

Maps most plausible values to very small subset
of possible integers. Still very large buckets.

)ﬁ}) =
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What's a Good Hash Function?

51

General Criteria:

- Evenly distributes results across range (in Java: ~4 billion int values)
- Sensitive to small changes

e.g. “squeak” and “quakes” should have different hashes
- Cheap to compute

A perfect hash function maps every input to a unique value.
Sometimes possible, but rare.

Domain knowledge and application-specific tradeoffs make a huge
Difference!
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What's a Good Hash Function?

General Recipe (from “Effective Java” by Josh Bloch):
@Override

. Why 317
1n’F hashCode() { Generally, with modulo, odd primes
int result = 0; are the best choice to ensure coverage.
for (var field : fields) f{ Very different from numbers people
var x = field.hashCode(); would choose (powers of 10 or 2).

result = 31 * result + x;

}

. Makes room in accumulator so x can influence result and
return result;

field values don’t just cancel each other out

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
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Another Way to Look at Hashes

Comparing objects can be expensive. E.g., for two graphs to be equal,
they need the same vertices and edges. Two graphs might only differ in
one edge, and thus are different, but you need to find that edge first.

Often, you can store a hash code in an object after computing it for the
first time. It’s then a cheap way to pre-check equality. If the hashes of
two objects are different, then the objects must not be equal. Integer
comparisons are cheap. Since most objects aren’t equal, that’s a lot of
work you can save this way.
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Uses of Hash Codes

54

Hash Tables
Cheaper Equality Comparisons / Checksums

In Programs
Of Files
Of Messages / Network Packets

Blockchains / Cryptography / Digital Signatures: note - harder requirements on “good” hash functions
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