
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

BFS or DFS?

2 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

3

BFS or DFS?

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

4

BFS or DFS?

6/05/2025School of Computing | COMP1110/6710 2025 S1

Nodes on DFS stack, worst case
- Up to branching factor * depth
- For binary tree, O(d) = O(log n)

d … depth of tree, n … #nodes in tree

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

BFS or DFS?

6/05/2025School of Computing | COMP1110/6710 2025 S1

Nodes in BFS queue, worst case
- Up to width of tree
- For binary tree: O(n), generally

O(𝑏𝑑) – can be very large
n … #nodes in tree, 𝑑 … depth of tree
 𝑏 … branching factor

This assumes that you do not need to keep track of where you came from,
though with a branching factor ≥ 2, #past nodes < #next nodes

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Maximum Stack/Queue Size for

binary trees

6

BFS or DFS?

6/05/2025School of Computing | COMP1110/6710 2025 S1

Depth DFS BFS

1 1 1

2 2 2

3 3 4

4 4 8

5 5 16

6 6 32

7 7 64

8 8 128

9 9 256

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Default recommendation: recursive DFS

Where trees get deep: switch to iteration

Reasons to go to BFS:

- Distance from start matters

- Tree is deep, but goal is likely close

- Special case: tree may be infinitely deep, so goal, if it exists, is
always relatively close, but may be on a different branch

➔ BFS ensures an “even” search

7

BFS or DFS?

6/05/2025School of Computing | COMP1110/6710 2025 S1

Sets, Maps,
and Hashing
One Weird Trick to get to O(1)…ish

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

explore(Node n) {
 remaining = new Queue/Stack<>(); remaining.add/push(n);
 seen = new List?<>(); seen.add(n);
 while(!remaining.isEmpty()) {
 current = remaining.dequeue/pop();
 for(n : current.neighbours) {
 if(!seen.contains(n)) {
 remaining.add/push(n); seen.add(n);
 }
 }
 }}

Recall: BFS/DFS

O(n)

O(n)
???

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Ideas?

- List: linear scan – O(n)

- Sorted Array: binary search: O(log n)

Can we do better?

10

Implementing “Contains”

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Because we don’t know where in the list/array an element should be.

In a sorted list/array, the position in the list/array depends on what
other unknown things are in the list/array.

In an unsorted list/array, the position is completely arbitrary.

11

Why Linear Scan or Binary Search?

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

12 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

13 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

14 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

15 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

16 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

17 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

18 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

19 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Each book has a specific location

- If you borrow a book, all the other books don’t move

- If you return a book, all the other books don’t move

- There is some additional empty space for when the library acquires
new books

- Once in a while (very rarely), things get reorganized

➔ Adding, Finding, and Removing a book does not need a great deal of
searching

20

A Library (in principle)

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

If you have an array, and know an index into it, access is O(1)

➔ If we can assign every object a unique identifier, and have an array
big enough for all them, we can access their slot instantly

21

In a Computer

6/05/2025School of Computing | COMP1110/6710 2025 S1

Objects are much more short-lived than books – lots of empty space

Needs as much space as the rest of the program for every array

Lookup should be able to find objects that are equal, but not
necessarily the same object (==)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

An int value for every object.

232 (~4 billion) possible values.

Remember: longs have 264 possible values, so there are 4 billion longs
for every possible hashCode. That’s fine, it does not have to be unique.

22

hashCode

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Object implements hashCode based on an object’s address in memory:

jshell> Object o=new Object()

o ==> java.lang.Object@34033bd0

jshell> o.hashCode()

$2 ==> 872627152

23

hashCode

6/05/2025School of Computing | COMP1110/6710 2025 S1

Hex 34033bd0 = Dec 872627152

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

4 billion entries would be a lot. But now that we accept collisions,
what’s a few more?

➔ Pick a more reasonable size for your array (depending on how much
data you have). Then take the (positive) remainder of dividing the hash
code by the array size.

24

Still a Large Array?

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

25

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

26

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

27

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

5“Hello”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

28

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello” 5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

29

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello”

Object put(String key, Integer val) {
 int idx = key.hashCode()%size;
 var old = arr[idx].val;
 arr[idx].key = key;
 arr[idx].val = val;
 return old;
}

5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

30

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello”

Object put(String key, Integer val) {
 int idx = key.hashCode()%size;
 var old = arr[idx].val;
 arr[idx].key = key;
 arr[idx].val = val;
 return old;
}

5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx

null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

31

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello”

Object put(String key, Integer val) {
 int idx = key.hashCode()%size;
 var old = arr[idx].val;
 arr[idx].key = key;
 arr[idx].val = val;
 return old;
}

5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx

null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

32

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello”

Object put(String key, Integer val) {
 int idx = key.hashCode()%size;
 var old = arr[idx].val;
 arr[idx].key = key;
 arr[idx].val = val;
 return old;
}

5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx

null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

33

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello”

Object put(String key, Integer val) {
 int idx = key.hashCode()%size;
 var old = arr[idx].val;
 arr[idx].key = key;
 arr[idx].val = val;
 return old;
}

5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx

null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

34

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello”

Object put(String key, Integer val) {
 int idx = key.hashCode()%size;
 var old = arr[idx].val;
 arr[idx].key = key;
 arr[idx].val = val;
 return old;
}

5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx

null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

35

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello” 5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

36

HashMap: Key Idea

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello” 5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx

boolean containsKey(String key) {
 int idx = key.hashCode()%size;
 if(arr[idx] == null) return false;
 return arr[idx].key.equals(key);
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Many Objects will have the same hash code. Taking the remainder to
get a smaller number increases the number of collisions further.

Many solutions, but simplest one is to have each entry point to a linked
list – a “bucket”, which can contain multiple entries mapped to the
same index. The equals method distinguishes between the keys.

37

Hash Collisions

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

38

HashMap

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

“Hello” 5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

39

HashMap

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

“Hello” 5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

40

HashMap

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

“Hello” 5

6960965069609650 10204035

5:

6:

7:

8:

9:

10:

Same hashes will always end up
in same bucket – hopefully unlikely

Different hashes may be put in same
bucket by taking remainder – resizing
the array means they can move.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

41

HashMap

6/05/2025School of Computing | COMP1110/6710 2025 S1

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

“Hello” 5

6960965069609650

1020

4035

A rare reorganization. Hashes
still let you find buckets instantly,
just based on a different divisor.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

42 6/05/2025School of Computing | COMP1110/6710 2025 S1

This is a bucket

These are things in the bucket

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

A concrete implementation of Abstract Data Type “Set”, which is a list
without ordering or multiple entries of the same element.

- Add/Remove

- Check Membership

- Iterate through elements, in some arbitrary order

In Java, implementation based on HashMap – simply ignore the
associated values.

43

HashSet

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Depends on implementation.

For local linked lists, key operations (put, get, remove, containsKey) on
average constant, but not quite O(1).

Better implementations can do O(1); in any case, we typically treat
those operations as constant.

Overall analysis is complicated ➔ more advanced courses.

Key requirement: a good hash function

44

Time Complexity

6/05/2025School of Computing | COMP1110/6710 2025 S1

Hash Functions
and Equality

45 6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

== compares object identity, i.e. are left and right the same thing on the
heap? Cannot be changed.

equals has a default implementation as ==, but can be overridden.

Many standard library classes do this, and you can, too.

Recap: equals vs. ==

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

class Person {
 String firstName;
 String lastName;
 …
 @Override
 boolean equals(Object other) {
 if(other instanceof Person p) {
 return firstName.equals(p.firstName) &&
 lastName.equals(p.lastName);
 }
 return false;
 }
}

Overriding Equals
Generally, you want to compare the
values of relevant fields.

records do this automatically.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Reflexive (every object is equal to itself)

- Transitive (A equals B and B equals C ➔ A equals C)

- Symmetric (A equals B  B equals A)

- Stable results (may change if relevant fields have changed)

- Consistent with results of Comparable<T>.compareTo (if applicable)
and hashCode
- A.compareTo(B) == 0  A.equals(B)
- A.equals(B) ➔ A.hashCode() == B.hashCode()

48

Expectations on Equals

6/05/2025School of Computing | COMP1110/6710 2025 S1

Key Concept in Computing/Logic: Implication (➔) ≠ Equivalence ()

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

49

What’s a Good Hash Function?

6/05/2025School of Computing | COMP1110/6710 2025 S1

class Person {
 String firstName;
 String lastName;
 …
 @Override
 int hashCode() {
 return 0;
 }
}

Valid:
Since all objects have the same hash code,
it is guaranteed to be equal for equal objects.

Not Good:
Destroys good HashMap properties – everything
will always go into the same bucket!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

50

What’s a Good Hash Function?

6/05/2025School of Computing | COMP1110/6710 2025 S1

class Person {
 String firstName;
 String lastName;
 …
 @Override
 int hashCode() {
 return firstName.length();
 }
}

Valid:
Since all objects with the same firstName length
have the same hash code, it is guaranteed to be
equal for equal objects.

Not Good:
Maps most plausible values to very small subset
of possible integers. Still very large buckets.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

51

What’s a Good Hash Function?

6/05/2025School of Computing | COMP1110/6710 2025 S1

General Criteria:
- Evenly distributes results across range (in Java: ~4 billion int values)
- Sensitive to small changes

e.g. “squeak” and “quakes” should have different hashes
- Cheap to compute

A perfect hash function maps every input to a unique value.
Sometimes possible, but rare.

Domain knowledge and application-specific tradeoffs make a huge
Difference!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

General Recipe (from “Effective Java” by Josh Bloch):
@Override
int hashCode() {
 int result = 0;
 for (var field : fields) {
 var x = field.hashCode();
 result = 31 * result + x;
 }
 return result;
}

52

What’s a Good Hash Function?

6/05/2025School of Computing | COMP1110/6710 2025 S1

Makes room in accumulator so x can influence result and
field values don’t just cancel each other out

Why 31?
Generally, with modulo, odd primes
are the best choice to ensure coverage.
Very different from numbers people
would choose (powers of 10 or 2).

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Comparing objects can be expensive. E.g., for two graphs to be equal,
they need the same vertices and edges. Two graphs might only differ in
one edge, and thus are different, but you need to find that edge first.

Often, you can store a hash code in an object after computing it for the
first time. It’s then a cheap way to pre-check equality. If the hashes of
two objects are different, then the objects must not be equal. Integer
comparisons are cheap. Since most objects aren’t equal, that’s a lot of
work you can save this way.

53

Another Way to Look at Hashes

6/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Hash Tables

- Cheaper Equality Comparisons / Checksums
- In Programs

- Of Files

- Of Messages / Network Packets

- Blockchains / Cryptography / Digital Signatures: note – harder requirements on “good” hash functions

54

Uses of Hash Codes

7/05/2025School of Computing | COMP1110/6710 2025 S1

	1A
	Slide 1
	Slide 2: BFS or DFS?
	Slide 3: BFS or DFS?
	Slide 4: BFS or DFS?
	Slide 5: BFS or DFS?
	Slide 6: BFS or DFS?
	Slide 7: BFS or DFS?
	Slide 8: Sets, Maps, and Hashing
	Slide 9: Recall: BFS/DFS
	Slide 10: Implementing “Contains”
	Slide 11: Why Linear Scan or Binary Search?
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: A Library (in principle)
	Slide 21: In a Computer
	Slide 22: hashCode
	Slide 23: hashCode
	Slide 24: Still a Large Array?
	Slide 25: HashMap: Key Idea
	Slide 26: HashMap: Key Idea
	Slide 27: HashMap: Key Idea
	Slide 28: HashMap: Key Idea
	Slide 29: HashMap: Key Idea
	Slide 30: HashMap: Key Idea
	Slide 31: HashMap: Key Idea
	Slide 32: HashMap: Key Idea
	Slide 33: HashMap: Key Idea
	Slide 34: HashMap: Key Idea
	Slide 35: HashMap: Key Idea
	Slide 36: HashMap: Key Idea
	Slide 37: Hash Collisions
	Slide 38: HashMap
	Slide 39: HashMap
	Slide 40: HashMap
	Slide 41: HashMap
	Slide 42
	Slide 43: HashSet
	Slide 44: Time Complexity
	Slide 45: Hash Functions and Equality
	Slide 46: Recap: equals vs. ==
	Slide 47: Overriding Equals
	Slide 48: Expectations on Equals
	Slide 49: What’s a Good Hash Function?
	Slide 50: What’s a Good Hash Function?
	Slide 51: What’s a Good Hash Function?
	Slide 52: What’s a Good Hash Function?
	Slide 53: Another Way to Look at Hashes
	Slide 54: Uses of Hash Codes

