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Nodes on DFS stack, worst case
- Up to branching factor * depth
- For binary tree, O(d) = O(log n)

d … depth of tree, n … #nodes in tree
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Nodes in BFS queue, worst case
- Up to width of tree
- For binary tree: O(n), generally

O(𝑏𝑑) – can be very large
n … #nodes in tree, 𝑑 … depth of tree
              𝑏 … branching factor

This assumes that you do not need to keep track of where you came from,
though with a branching factor ≥ 2, #past nodes < #next nodes
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Maximum Stack/Queue Size for

binary trees
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BFS or DFS?
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Depth DFS BFS

1 1 1

2 2 2

3 3 4

4 4 8

5 5 16

6 6 32

7 7 64

8 8 128

9 9 256
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Default recommendation: recursive DFS

Where trees get deep: switch to iteration

Reasons to go to BFS:

- Distance from start matters

- Tree is deep, but goal is likely close

- Special case: tree may be infinitely deep, so goal, if it exists, is 
always relatively close, but may be on a different branch

➔ BFS ensures an “even” search
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BFS or DFS?
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Sets, Maps,
and Hashing
One Weird Trick to get to O(1)…ish
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explore(Node n) {
    remaining = new Queue/Stack<>(); remaining.add/push(n);
    seen = new List?<>(); seen.add(n);
    while(!remaining.isEmpty()) {
       current = remaining.dequeue/pop();
       for(n : current.neighbours) {
         if(!seen.contains(n)) {
              remaining.add/push(n); seen.add(n);
           }
       }
    }}

Recall: BFS/DFS

O(n)

O(n)
???
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Ideas?

- List: linear scan – O(n)

- Sorted Array: binary search: O(log n)

Can we do better?
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Implementing “Contains”
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Because we don’t know where in the list/array an element should be.

In a sorted list/array, the position in the list/array depends on what 
other unknown things are in the list/array.

In an unsorted list/array, the position is completely arbitrary.

11

Why Linear Scan or Binary Search?
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- Each book has a specific location

- If you borrow a book, all the other books don’t move

- If you return a book, all the other books don’t move

- There is some additional empty space for when the library acquires 
new books 

- Once in a while (very rarely), things get reorganized

➔ Adding, Finding, and Removing a book does not need a great deal of 
searching

20

A Library (in principle)
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If you have an array, and know an index into it, access is O(1)

➔ If we can assign every object a unique identifier, and have an array 
big enough for all them, we can access their slot instantly

21

In a Computer
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Objects are much more short-lived than books – lots of empty space

Needs as much space as the rest of the program for every array

Lookup should be able to find objects that are equal, but not 
necessarily the same object (==)
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An int value for every object. 

232 (~4 billion) possible values.

Remember: longs have 264 possible values, so there are 4 billion longs 
for every possible hashCode. That’s fine, it does not have to be unique.
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hashCode
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Object implements hashCode based on an object’s address in memory:

jshell> Object o=new Object()

o ==> java.lang.Object@34033bd0

jshell> o.hashCode()

$2 ==> 872627152
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hashCode
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Hex 34033bd0 = Dec 872627152
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4 billion entries would be a lot. But now that we accept collisions, 
what’s a few more?

➔ Pick a more reasonable size for your array (depending on how much 
data you have). Then take the (positive) remainder of dividing the hash 
code by the array size.
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Still a Large Array?
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HashMap: Key Idea
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e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);
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e.g. Array Size: 11

HashMap<String, Integer> map = new HashMap<>();
String s = “Hello”;
Integer i = 5;
map.put(s, i);
map.containsKey(s);

“Hello”

Object put(String key, Integer val) {
  int idx = key.hashCode()%size;
  var old = arr[idx].val;
  arr[idx].key = key;
  arr[idx].val = val;
  return old;
}

5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx
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e.g. Array Size: 11
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“Hello” 5

“Hello”.hashCode() = 69609650
% 11 = 0 → idx

boolean containsKey(String key) {
  int idx = key.hashCode()%size;
 if(arr[idx] == null) return false;
  return arr[idx].key.equals(key);
}
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Many Objects will have the same hash code. Taking the remainder to 
get a smaller number increases the number of collisions further.

Many solutions, but simplest one is to have each entry point to a linked 
list – a “bucket”, which can contain multiple entries mapped to the 
same index. The equals method distinguishes between the keys.
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Hash Collisions
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5:

6:

7:

8:

9:

10:

Same hashes will always end up
in same bucket – hopefully unlikely

Different hashes may be put in same
bucket by taking remainder – resizing
the array means they can move.
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4035

A rare reorganization. Hashes
still let you find buckets instantly,
just based on a different divisor.
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This is a bucket

These are things in the bucket
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A concrete implementation of Abstract Data Type “Set”, which is a list 
without ordering or multiple entries of the same element.

- Add/Remove

- Check Membership

- Iterate through elements, in some arbitrary order

In Java, implementation based on HashMap – simply ignore the 
associated values.

43

HashSet
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Depends on implementation. 

For local linked lists, key operations (put, get, remove, containsKey) on 
average constant, but not quite O(1).

Better implementations can do O(1); in any case, we typically treat 
those operations as constant.

Overall analysis is complicated ➔ more advanced courses.

Key requirement: a good hash function
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Time Complexity

6/05/2025School of Computing    |     COMP1110/6710 2025 S1



Hash Functions 
and Equality
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== compares object identity, i.e. are left and right the same thing on the 
heap? Cannot be changed.

equals has a default implementation as ==, but can be overridden.

Many standard library classes do this, and you can, too.

Recap: equals vs. ==
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class Person {
   String firstName;
   String lastName;
   …
   @Override
   boolean equals(Object other) {
   if(other instanceof Person p) {
         return firstName.equals(p.firstName) &&
                lastName.equals(p.lastName);
      }
      return false;
   }
}

Overriding Equals
Generally, you want to compare the
values of relevant fields.

records do this automatically.
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- Reflexive (every object is equal to itself)

- Transitive (A equals B and B equals C ➔ A equals C)

- Symmetric (A equals B  B equals A)

- Stable results (may change if relevant fields have changed)

- Consistent with results of Comparable<T>.compareTo (if applicable) 
and hashCode
-   A.compareTo(B) == 0  A.equals(B)
-   A.equals(B) ➔ A.hashCode() == B.hashCode()

48

Expectations on Equals
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Key Concept in Computing/Logic: Implication (➔) ≠ Equivalence ()
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What’s a Good Hash Function?
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class Person {
   String firstName;
   String lastName;
   …
   @Override
   int hashCode() {
      return 0;
   }
}

Valid:
Since all objects have the same hash code,
it is guaranteed to be equal for equal objects.

Not Good:
Destroys good HashMap properties – everything
will always go into the same bucket!
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class Person {
   String firstName;
   String lastName;
   …
   @Override
   int hashCode() {
      return firstName.length();
   }
}

Valid:
Since all objects with the same firstName length
have the same hash code, it is guaranteed to be
equal for equal objects.

Not Good:
Maps most plausible values to very small subset
of possible integers. Still very large buckets.
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What’s a Good Hash Function?
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General Criteria:
- Evenly distributes results across range (in Java: ~4 billion int values)
- Sensitive to small changes

e.g. “squeak” and “quakes” should have different hashes
- Cheap to compute

A perfect hash function maps every input to a unique value.
Sometimes possible, but rare.

Domain knowledge and application-specific tradeoffs make a huge
Difference!
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General Recipe (from “Effective Java” by Josh Bloch):
@Override
int hashCode() {
  int result = 0;
  for (var field : fields) { 
    var x = field.hashCode();
    result = 31 * result + x;
  }
  return result;
}

52

What’s a Good Hash Function?
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Makes room in accumulator so x can influence result and
field values don’t just cancel each other out

Why 31?
Generally, with modulo, odd primes
are the best choice to ensure coverage.
Very different from numbers people
would choose (powers of 10 or 2).
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Comparing objects can be expensive. E.g., for two graphs to be equal, 
they need the same vertices and edges. Two graphs might only differ in 
one edge, and thus are different, but you need to find that edge first.

Often, you can store a hash code in an object after computing it for the 
first time. It’s then a cheap way to pre-check equality. If the hashes of 
two objects are different, then the objects must not be equal. Integer 
comparisons are cheap. Since most objects aren’t equal, that’s a lot of 
work you can save this way.

53

Another Way to Look at Hashes
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- Hash Tables

- Cheaper Equality Comparisons / Checksums
- In Programs

- Of Files

- Of Messages / Network Packets

- Blockchains / Cryptography / Digital Signatures: note – harder requirements on “good” hash functions

54

Uses of Hash Codes
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