
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

On U4

- Lots of 0s on tests, because of unchanged static interface methods

- Partial Credit through Code Walk

- But: potential to cure in mark moderation

- For that, we’ll allow you to submit a fixed version of the interface
(see rules on next slide)

- NO GUARANTEES, but we’ll have your back if the difference would
make you fail the course

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- DO NOT touch a single character outside the static methods that
make up the testing interface

- DO NOT put any important logic into the static methods – they need
to be calling existing methods/constructors in the code you already
submitted, module constants/minor expressions (such as x+1)

- How the fix is scored is decided in mark moderation, but if you
violate the rules, your assignment marks become 0 (otherwise, you’ll
get the better mark)

- How to submit this – to be announced

3

Curing U4 - Rules

13/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Quiz time!

13/05/20254 School of Computing | COMP1110/6710 2025 S1

pollev.com/fabianm
Register for Engagement

Log in with ANU Account!

Exceptions

Not the ones where you get more marks

5 13/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

try(var reader = new BufferedReader(new FileReader(file))) {

 for(String line = reader.readLine(); line != null;
 line = reader.readLine()) {

 … [do something with line] …

 }

} catch(Exception e) {

 throw new RuntimeException(e);

}

6

From Week 6: Reading (Text) Files

13/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- return statements/end of
method go back to current
position in previous method on
stack

- returned value has to match
return type

Exceptions & Control Flow
Normal Control Flow Exceptional Control Flow

- throw statements go to
closest matching catch-block
on stack (which may be in
current method)

- thrown value may have to be
caught or match throws
clause

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

throw new RuntimeException();

8

Throwing Exceptions

13/05/2025School of Computing | COMP1110/6710 2025 S1

throw new RuntimeException();

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Type method([args] …) {
 …
 try {
 …

 …
 } catch(…) { …
 } catch(RuntimeException e) {
 …
 }
 …
}
9

Throwing Exceptions

13/05/2025School of Computing | COMP1110/6710 2025 S1

throw new RuntimeException();throw new RuntimeException();

Type method([args] …) {
 …
 try {
 …

 …
 } catch(…) {
 …
 }
 …
}

Matching catch-block
e refers to thrown
exception object

zero or more try-blocks

no matching catch-blocks

Look further down the call stack
Continue after last catch-block

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Type method2([args] …) {
 …
 try {
 …

 …
 } catch(…) {
 …
 }
 …
}

Type method2([args] …) {
 …
 try {
 …

 …
 } catch(…) { …
 } catch(RuntimeException e) {
 …
 }
 …
}
10

Throwing Exceptions

13/05/2025School of Computing | COMP1110/6710 2025 S1

….method(…);….method(…);

zero or more try-blocks

no matching catch-blocks

Keep looking further down the stack

Matching catch-block
e refers to thrown
exception object

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public static void main(String[] args) {
 …
 try {
 …

 …
 } catch(…) {
 …
 }
 …
}

11

Throwing Exceptions

13/05/2025School of Computing | COMP1110/6710 2025 S1

….methodN(…);

zero or more try-blocks

no matching catch-blocks

Crash the program, print stack trace

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

try {

 …

} catch(ExceptionType1 e) {

 …

} … { …

} catch(ExceptionTypeN e) {

 …

}

12

Try/Catch

13/05/2025School of Computing | COMP1110/6710 2025 S1

If an exception is thrown in here, and not caught earlier …

… we try to match its (run-time) type
against the catch-clause, using
the first matching one.
If no match, look for matching try-catch
outside of this one, possibly further
down the call stack.

Some number of
catch clauses

Must be subtypes of
Throwable

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

throw e;

throw new MyExceptionClass(…);

13

Throw

13/05/2025School of Computing | COMP1110/6710 2025 S1

Must be instance of
Throwable

class MyExceptionClass
 extends Exception { … }

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Type myMethod([args]…) throws MyException, MyOtherException {

 …

}

14

Throws

13/05/2025School of Computing | COMP1110/6710 2025 S1

Must be subtypes of Throwable

Part of the Java signature of a method.
Says that the method may throw
exceptions of those types, and callers
should prepare to handle them.

/** …
 * @throws MyException [reasons for MyException]
 * @throws MyOtherException [reasons for MyOtherException]
 * … */

Needs to be mirrored in human signature

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

15

Exception Hierarchy

13/05/2025School of Computing | COMP1110/6710 2025 S1

Object

Throwable

ExceptionError

RuntimeException
… … ……

… …

Checked Exceptions
Need to be caught

or mentioned
in throws

clause

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

16

Exception Hierarchy

13/05/2025School of Computing | COMP1110/6710 2025 S1

Error

RuntimeException

Checked Exceptions
You should be able to handle these. Need to be caught or declared in throws
clause – part of the Java signature.

You may not be able to handle these.
Only part of human signature , if at all.

You may not be able to handle these.
Only part of human signature, if at all.

Most common: IOException, SQLException

Typically, these are excluded by
pre-/postconditions/invariants.
E.g. NullPointerException,
IndexOutOfBoundsException

Caused by things outside of the program.
E.g. IOError, VirtualMachineError

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

try {

 …

} catch (…) {

 …

} finally {

 //cleanup

}

17

finally-Blocks

13/05/2025School of Computing | COMP1110/6710 2025 S1

finally-blocks are an optional last
part of try-blocks.

They are always executed when
the try-block is left:

- through regular control flow
(return, continue, break,
reaching the end of normal
execution or a catch-block)

- By throwing an exception

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

18

finally-Blocks

13/05/2025School of Computing | COMP1110/6710 2025 S1

finally-blocks are an optional last
part of try-blocks.

They are always executed when
the try-block is left:

- through regular control flow
(return, continue, break,
reaching the end of normal
execution or a catch-block)

- By throwing an exception

Type methodN([args] …) {
 …
 try {
 …

 …
 } catch(…) {
 …
 }
 …
}

zero or more try-blocks

no matching catch-blocks

Keep looking further down the stack
Run any finally-blocks belonging to
try-blocks we are leaving

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

19

try-with-resources

13/05/2025School of Computing | COMP1110/6710 2025 S1

try(var reader = new BufferedReader(new FileReader(file))) {

 for(String line = reader.readLine(); line != null;
 line = reader.readLine()) {

 … [do something with line] …

 }

} catch(Exception e) {

 throw new RuntimeException(e);

}

A safer version
of calling
reader.close()
in finally-block

Must be instance of java.lang.AutoCloseable

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

20

Chained Exceptions

13/05/2025School of Computing | COMP1110/6710 2025 S1

try(var reader = new BufferedReader(new FileReader(file))) {

 for(String line = reader.readLine(); line != null;
 line = reader.readLine()) {

 … [do something with line] …

 }

} catch(Exception e) {

 throw new RuntimeException(e);

} Wrap current exception (which may be a checked exception) in
another exception that works with the interface of the current code
(i.e. an unchecked exception, or one that is declared in throws
clause, or caught somewhere in the context).

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Quiz time!

13/05/202521 School of Computing | COMP1110/6710 2025 S1

pollev.com/fabianm
Register for Engagement

Log in with ANU Account!

Packages and
the Class Path
Organizing your code and avoiding name clashes

22 13/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

stargate.Sam

23

Java Packages

© Nickelodeon© MGM © New Line Cinema© ConcernedApe

stardewValley.Sam dannyPhantom.Sam

lordOfTheRings.Sam
“Sam” – but which one?

School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

24

Java Packages

© Nickelodeon© MGM © New Line Cinema© ConcernedApe

stardewValley.Sam

stargate.Sam

dannyPhantom.Sam

lordOfTheRings.Sam

Namespaces in which
“Sam” is well defined.

School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Mirror directory structure of source and class files

- Source files need to declare:
package path.to.package.folder;

- Packages can be imported with:
import path.to.package.folder;

(Folder paths are relative to class path, coming up)

Java Packages

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

If you write a library, use an internet domain as package prefix, in
reverse order.

E.g.

package au.edu.anu.comp.comp1110;

26

Package Conventions

13/05/2025School of Computing | COMP1110/6710 2025 S1

src

au

edu

anu

comp

comp1110

SomeClass.java

Folder structure:

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

For simplicity, the root source folder is the “default” package.

There is no package declaration for it, but you also cannot import it.

Things in actual packages cannot refer to things in the default
package, but things in the default package can refer to anything.

We used this in all assignments so far.

27

The Default Package

13/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

28

The Class Path

13/05/2025School of Computing | COMP1110/6710 2025 S1

Or: How Java finds your classes

src

au

edu

anu

comp

comp1110

SomeClass.java

[project-name]

au

edu

anu

comp

comp1110

SomeClass.class

production
out IntellijJ IDEA

defaults, can
be different

IntellijJ IDEA default, can
be different

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Like the PATH environment variable, the Class Path is a collection of
“roots”.

E.g.: “out/production/[project-name]/:lib/comp1110lib.jar”

29

The Class Path

13/05/2025School of Computing | COMP1110/6710 2025 S1

Or: How Java finds your classes

Path separator on Linux/Mac – on Windows, use “;”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Like the PATH environment variable, the Class Path is a collection of
“roots”.

E.g.: “out/production/[project-name]/:lib/comp1110lib.jar”

30

The Class Path

13/05/2025School of Computing | COMP1110/6710 2025 S1

Or: How Java finds your classes

Essentially a Zip-file containing a folder structure with class files,
like a regular out/production/[project-name].

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Like the PATH environment variable, the Class Path is a collection of
“roots”.

E.g.: “out/production/[project-name]/:lib/comp1110lib.jar”

When you import au.edu.anu.comp.comp1110.SomeClass;

Java will look to find the corresponding file at the corresponding path

starting from any component of the class path.

31

The Class Path

13/05/2025School of Computing | COMP1110/6710 2025 S1

Or: How Java finds your classes

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Like the PATH environment variable, the Class Path is a collection of
“roots”.

E.g.: “out/production/[project-name]/:lib/comp1110lib.jar”

On the command line, write:
java –cp “out/production/[project-name]/:lib/comp1110lib.jar”
au.edu.anu.comp.comp1110.SomeClass

to find that class starting from one of the class path components and try

to run its main method.

32

The Class Path

13/05/2025School of Computing | COMP1110/6710 2025 S1

Or: How Java finds your classes

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Quiz time!

13/05/202533 School of Computing | COMP1110/6710 2025 S1

pollev.com/fabianm
Register for Engagement

Log in with ANU Account!

	1A
	Slide 1
	Slide 2: On U4
	Slide 3: Curing U4 - Rules
	Slide 4: Quiz time!
	Slide 5: Exceptions
	Slide 6: From Week 6: Reading (Text) Files
	Slide 7: Exceptions & Control Flow
	Slide 8: Throwing Exceptions
	Slide 9: Throwing Exceptions
	Slide 10: Throwing Exceptions
	Slide 11: Throwing Exceptions
	Slide 12: Try/Catch
	Slide 13: Throw
	Slide 14: Throws
	Slide 15: Exception Hierarchy
	Slide 16: Exception Hierarchy
	Slide 17: finally-Blocks
	Slide 18: finally-Blocks
	Slide 19: try-with-resources
	Slide 20: Chained Exceptions
	Slide 21: Quiz time!
	Slide 22: Packages and the Class Path
	Slide 23: Java Packages
	Slide 24: Java Packages
	Slide 25: Java Packages
	Slide 26: Package Conventions
	Slide 27: The Default Package
	Slide 28: The Class Path
	Slide 29: The Class Path
	Slide 30: The Class Path
	Slide 31: The Class Path
	Slide 32: The Class Path
	Slide 33: Quiz time!

