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Concurrency

Computers are not perfect at multitasking, either
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Doing Things Concurrently

Means: not necessarily doing them in a fixed order, or in order at all.

Usually, there
Task A Task B needs to be some
order, so within
task A and task B,
the order of

Task B Task A Task B Task B f{)ﬁeegztrf:s stays
Task B Task A '

A
L
| |

Distinction-Level Content =



We See That All The Time

Your computer is likely running several programs concurrently right
now.

Your phone is likely running several programs concurrently right now.

Your watch/TV/dishwasher/... may be running several programs
concurrently right now.

In fact, they may be running those programs in parallel.
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Concurrency vs. Parallelism

Concurrency ... doing things not necessarily in order, but independently
of each other. E.g. also time-slicing.

Parallelism ... doing things actually at the same time, say with multiple
processors/cores.

Most problems that need solving already come in with concurrency;
parallelism just makes some problems more acute (e.g. without
parallelism, you can assume that only one “basic” operation can happen

at the same time, but that’s usually not very helpful). N
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Concurrent Processes

Process ... a separate program executed on your computer. The task of
the operating system is to ensure that all processes can work
independently while sharing hardware resources and files.

[Demo - two Java process read and write a file]
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Concurrency within Programs

A single process may have multiple “threads”. Each thread has its own
stack, but all threads share the same heap.

(similarly, each process has its own memory (stack(s) + heap), but they
all share the same file system)

[Demo: A Java program with multiple threads]
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Creating a new Thread

interface Runnable { Runnable r = ..;
void run(); Thread t = new Thread(r);
} t.start();

//Optional:
//wait for t to finish
t.join();
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Problem:

There are lots of little steps in evaluating expressions.

For example, while evaluating
X =X + 1;

We first calculate x + 1, and then write the result back to x.
But during that calculation, x still has its old value.
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Problem:

Thread 1:

X =X + 1;

1. Retrieve x 2 4
2.Calculatex + 1 = 5
5.Store 5 in x

Global variable x

Thread 2:

X = X * 2;

3. Retrievex 2> 4
4. Calculatex * 2 > 8

10 School of Computing | COMP1110/6710 2025 S1

Distinction-Level Content  14/0s/2025



Problem:

Thread 1:

X =X + 1;

1. Retrieve x 2 4
2. Calculate x +
5.Store 5 in x

Global variable x

Thread 2:
X = X * 2;
3. Retrievex 2> 4
1 > 5 4. Calculatex * 2 > 8
?

6.Store 8 in X
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Problem:

Thread 1:

X =X + 1;

1. Retrieve x 2 4
2. Calculate x +
5.Store 5 in x

Global variable x

Thread 2:
X = X * 2;
3. Retrievex 2> 4
1 > 5 4. Calculatex * 2 > 8
?

6.Store 8 in X
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Problem:

Thread 1:

X =X + 1;

1. Retrieve x 2 4
2.Calculatex + 1 = 5
5.Store 5 in x

“Lost update” !

Global variable x

Thread 2:

X = X * 2;

3. Retrievex 2> 4
4. Calculatex * 2 > 8
? 6.Store 8 in x
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Solution: Mutual Exclusion

In Java, via synchronized-blocks: Shorthand:
synchronized [Type] foo(..) {

synchronized(sharedLockObj) {

Reference to some ¥
} object on the heap ~
Only one thread can be in a [Type] foo(..) {
synchronized-block (also called a synchronized(this) {
“cr_itical section” for_the same heap Or special “class” object
object at the same time. for static methods
Others have to wait. 1} e
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SynCh ronized Global variable x

Thread 1: Thread 2:

synchronized(xlock) { synchronized(xlock) {
X = X + 1; X =X * 2;

} }

Whichever thread enters

the synchronized block first .
gets to finish it;

the other thread has  Global variable xlock (= new Object())
to wait
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SynCh ronized Global variable x

Thread 1: Thread 2:
synchronized(xlock) { - synchronized(xlock) {
°
X =X + 1; X = X * 2% -
“"2" Waiting
} } I N
“

. A“

Whichever thread enters

the synchronized block first

gets to finish it;
the other thread has
to wait

Global variable xlock (= new Object())

-
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SynCh ronized Global variable x

Thread 1:

synchronized(xlock) {

X =X + 1;

}

Thread 2:
synchronized(xlock) {
°

- * T ‘X“*"z‘;" Waiting

A’
Whichever thread enters
the synchronized block first

gets to finish it;
the other thread has
to wait

Global variable xlock (= new Object())

-
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SynCh ronized Global variable x

Thread 1: Thread 2:
synchronized(xlock) { synchronized(xlock) {
°
X =X + 1; x=x*‘2,;t“ -
. Waitin

} - } “““ g

. A’ ’
Whichever thread enters

the synchronized block first

gets to finish it;
the other thread has
to wait

Global variable xlock (= new Object())

-
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SynCh ronized Global variable x

Thread 1:

synchronized(xlock) {

X =X + 1;

}

Whichever thread enters
the synchronized block first

gets to finish it;
the other thread has
to wait

Thread 2:

synchronized(xlock) {
X = X *

Global variable xlock (= new Object())

-
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SynCh ronized Global variable x

Thread 1:

synchronized(xlock) {

X =X + 1;

}

Whichever thread enters
the synchronized block first

gets to finish it;
the other thread has
to wait

Thread 2:

synchronized(xlock) {
X = X *

Global variable xlock (= new Object())

-

20 School of Computing | COMP1110/6710 2025 S1

Distinction-Level Content  14/0s/2025



SynCh ronized Global variable x

Thread 1: Thread 2:

synchronized(xlock) { synchronized(xlock) {
X =X + 1; X = x *

} }

Still two possible values
for x, but at least not
nore than that

Global variable xlock (= new Object())
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Beware: Deadlocks

Thread 1: Thread 2:

synchronized(a) { synchronized(b) {
synchronize

Walitin

synchronj
“
)

Waiting
} General Strategy:
always synchronize on

objects in the same order
a b in all threads

Threads are waiting for
each other - will never
continue...
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Threads - Applications

Dividing up work, where N threads can do work ~N times as fast

Responsive interfaces, running background work separately

Servers that handle multiple clients
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Threads - Summary

- Concurrency arbitrary interleaves actions from different Threads
- This may produce weird results, or violate invariants
- Use synchronization constructs to limit the possible interleavings

- Beware of over-synchronizing:
- Danger of deadlocks
- Loss of valid concurrency
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What Are We Here For?

Students will learn to use an industrial-strength object-oriented
programming language and form basic mental models of how computer
programs execute and interact with their environment. The course
focuses on key aspects of solving programming problems: reasoning
about a problem description to design appropriate data representations
and function/method descriptions, to find examples, to write, test,
debug, and otherwise evaluate the relevant code, and to present and
defend their approach.

...
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What Are We Here For?

form basic mental
models of how
computer programs
execute and interact
with their
environment.

The Command Line

Command Line Arguments

Printing / Reading from Standard Input
File Systems / File Operations
Compile-Time vs. Run-Time

Expressions, Statements & Functions
Control Flow:
- Left-to-Right, Inside-Out, Top-Down
- Control Flow Constructs
Mutable State / Stack vs. Heap

Testing & Debugging

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Working Code

Ultimately, we want to get a computer to do something for us.
Computer Science is about all aspects of how to best do that.

This requires:

Attention to details - computers are sticklers for details
Understanding requirements

Knowing how to run an test your code
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“It Works” Is Not Enough

Code is not just written for computers to run!

It is also written for people* to read

- When they want to convince themselves that it does what it should
-  When they need to add/change something

- When they just want to know how/why it works

*This includes you a week later
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What Are We Here For?

The course focuses on key aspects of solving programming problems:
reasoning about a problem description to design appropriate data
representations and function/method descriptions, to find examples, to
write, test, debug, and otherwise evaluate the relevant code, and to
present and defend their approach.

Sound familiar?
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Data Design

The shape of the data determines the shape of the code!

How you represent the data that you work with hugely influences how
easy or hard certain parts of your desired functionality will be to
implement, and other characteristics of your code.
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Data Design - Interpretations

We did this from the start:

Overall purpose of data definition

/** A Student is a record that contains key information about an

* ANU student. Examples:

* - Lisa Studywoman, ul234567, BAC Example values
- Paul Masterson, u7654321, MCOMP
he name of the student, a non-empty String
UID, identifying the student Explanations of
- the student’s degree program fields

*/
econd sttt e e A e AROEH) O

javadoc format, The fields of the record
useful for later

*
*
*
*
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Why?

Specifically, software that calculated
the total impulse produced by thruster
firings produced results in pound-force
seconds. The trajectory calculation
software then used these results -
expected to be in newton-seconds
(incorrect by a factor of 4.45) - to
update the predicted position of the
spacecraft.

TOEARTH  TOSUN
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https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

Data Design - The Expression Problem

Functional style: OO style:

sealed interfaces + records interfaces + classes

- Easy to add new functions - Easy to add new kinds of data
- More effort to add new kinds - More effort to add new

of data methods

14/05/2025 ~ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)
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Data Design - ADT Implementations

Arrays/ArraylLists: Linked Lists:

- Constant-time access - Constant-time insertion/deletion

- Linear-time add/insert/remove - Linear-time access

In general, trade-offs depend on application!
(In practice, ArrayList is usually the safer choice)

14/05/2025 TEQSA PROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY)
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Data Design - Abstraction

In Functional Java: usually via generalized ltemizations

At the core of Object-Oriented programming:

- Function Abstraction - Interfaces & Abstract Classes

- Type Abstraction - Encapsulation/Access Modifiers
- Data Abstraction - |terators
All in one!

The shape of the interface determines the shape of the code!
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Signature & Purpose Statement

The shape of the interface determines the shape of the code!

The “external” interface is often fixed, because other people depend on
it.

But how you design your helper functions makes a huge difference.
Don’t repeat yourself! Consider the possibilities for abstraction:

- Value Abstraction As always, document your
- Type Abstraction choices so other people (including
you in the future) understand what’s

Functional Abstraction
- Subtyping/Inheritance
But don’t abstract prematurely!

going on!

)ﬂ}) =
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Examples

The first key test: do you understand what should be happening here?

Having concrete examples both guides you in what code to write, and
how to evaluate it afterward.

Key point: think of corner-cases! Does the function behave uniformly
over all inputs, or are there differences? How do they play out?
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Designh Strategy

Going forward, this is the least critical part of the Design Recipe.
lts two main purposes were:

- To give you a small menu of options to choose from, making it easier
to make decisions

- Tolimit the overall size and complexity of the functions you write.
This should be the main legacy of this step for you: keep the various
parts of your code as simple, small, and independent as possible!
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Implementation

See other slides ©
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Remember: Working Code

Tests are no guarantee that your code is perfect, but if you do it well,
you can find lots of potential bugs (or better: see that they are not
there).

Tests also validate your examples, confirming your understanding of
the overall task.

H TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) )
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Working with Arbitrary-Sized Data

At the core of every interesting program

(Structural) Recursion

42

Follows the shape of the data

Easy to reason about

- Base Cases

- If you know the solutions for
smallers case, how do you
combine them for a bigger
case?

Unwieldy with some stateful
data structures

School of Computing | COMP1110/6710 2025 St

[teration

More natural when working with
arrays or generative recursion
(when there is no obvious data
structure to traverse)

- Less easy to reason about
- Think about termination!
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Mutable State

43

Very common, but also common source of bugs

Know what’s where: the stack or the heap?

Be clear about the invariants of your data definitions!

Be clear about the effects your code has on shared state!

School of Computing | COMP1110/6710 2025 St 14/05/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) )

OOOOOOOOOOOOOOOOOOOOOOOO



& -

Every variable

stands for asingle = T«

value within its
scope

~ = = Thingsin those
~
\) boxes may change
while you are
working on them

More fun
in later

courses!

44
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3 whose contents may

Every variable
stands for a box

change, and the

things they point to
may change, too

14/05/2025

We revisited this for:
Generics

- Closures
Concurrency
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Polymorphism / Type Abstraction

Subtyping

45

Core to OO

Abstracts commonalities in
interfaces - concrete type does
not matter when using interface

Dynamic Dispatch/Overriding
Loses static type information

School of Computing | COMP1110/6710 2025 St

Generics

Preserves static type
Information

For when actual types don’t
matter to generic code, but to
the user

In Java: compile-time only
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lterators

Not that interesting on their own.
But they combine:

- Mutable State

- lteration

- Multiple Kinds of Abstraction

An excellent way to reinforce all those concepts!

14/05/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) )
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Abstract Data Types

Key common pattern for most programs

Really: three difficulty levels

Lists/Maps: Trees:
- Usually simple - More general
l[teration/Recursion structure

- Very standardized

Still relatively
standard recursion,
but also BFS/DFS

- Lots of different
shapes

School of Computing | COMP1110/6710 2025 St 14/05/2025

Graphs:

- Yet More general
structure

- More complicated
traversal

- Possible loops
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Time Complexity

- Standard Interview Question

- Key consideration in large system design

- Important active research areas in Computer Science
- Huge difference in costs!
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SELTs

Plase fill them out (opens next week)!

In giving qualitative feedback, please be specific about issues you had
and things you think would improve the course!
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