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Concurrency

Computers are not perfect at multitasking, either
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Means: not necessarily doing them in a fixed order, or in order at all.

Doing Things Concurrently

Task A

Task B Task A

Task B

Task A
Task A

Task A

Task A

Task B

Task B

Task B
Task B

Task A

Task A

Task A

Task A

Task B

Task B

Task B

Task B Usually, there
needs to be some
order, so within
task A and task B,
the order of
operations stays
the same.
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Your computer is likely running several programs concurrently right 
now. 

Your phone is likely running several programs concurrently right now. 

Your watch/TV/dishwasher/… may be running several programs 
concurrently right now.

In fact, they may be running those programs in parallel.

4

We See That All The Time
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Concurrency … doing things not necessarily in order, but independently 
of each other. E.g. also time-slicing.

Parallelism … doing things actually at the same time, say with multiple 
processors/cores.

Most problems that need solving already come in with concurrency; 
parallelism just makes some problems more acute (e.g. without 
parallelism, you can assume that only one “basic” operation can happen 
at the same time, but that’s usually not very helpful).
5

Concurrency vs. Parallelism
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Process … a separate program executed on your computer. The task of 
the operating system is to ensure that all processes can work 
independently while sharing hardware resources and files.

[Demo – two Java process read and write a file]

6

Concurrent Processes
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A single process may have multiple “threads”. Each thread has its own 
stack, but all threads share the same heap.

(similarly, each process has its own memory (stack(s) + heap), but they 
all share the same file system)

[Demo: A Java program with multiple threads]

7

Concurrency within Programs
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interface Runnable {

   void run();

}

8

Creating a new Thread
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Runnable r = …;

Thread t = new Thread(r);

t.start();

//Optional:

//wait for t to finish

t.join();
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There are lots of little steps in evaluating expressions.

For example, while evaluating
x = x + 1;

We first calculate x + 1, and then write the result back to x.

But during that calculation, x still has its old value.

9

Problem:  

14/05/2025School of Computing    |     COMP1110/6710 2025 S1 Distinction-Level Content



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Thread 1:

x = x + 1;

10

Problem:  
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Thread 2:

x = x * 2;

Global variable x

4

1. Retrieve x → 4
2. Calculate x + 1 → 5
5. Store 5 in x 

3. Retrieve x → 4
4. Calculate x * 2 → 8
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Thread 1:

x = x + 1;
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Problem:  
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Thread 2:

x = x * 2;

Global variable x

5

1. Retrieve x → 4
2. Calculate x + 1 → 5
5. Store 5 in x 

3. Retrieve x → 4
4. Calculate x * 2 → 8
6. Store 8 in x 

?
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Thread 1:

x = x + 1;
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Problem:  
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Thread 2:

x = x * 2;

Global variable x

5

1. Retrieve x → 4
2. Calculate x + 1 → 5
5. Store 5 in x 

3. Retrieve x → 4
4. Calculate x * 2 → 8
6. Store 8 in x 
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Thread 1:

x = x + 1;
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Problem:  
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Thread 2:

x = x * 2;

Global variable x

8

1. Retrieve x → 4
2. Calculate x + 1 → 5
5. Store 5 in x 

3. Retrieve x → 4
4. Calculate x * 2 → 8
6. Store 8 in x 

?“Lost update”
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In Java, via synchronized-blocks:

synchronized(sharedLockObj) {

   …

}

14

Solution: Mutual Exclusion
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Reference to some
object on the heap 

Only one thread can be in a 
synchronized-block (also called a 
“critical section” for the same heap 
object at the same time.
Others have to wait.

Shorthand:
synchronized [Type] foo(…) {

   …

}

~

[Type] foo(…) {

   synchronized(this) {

     …

   }}

Or special “class” object
for static methods
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Synchronized
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Thread 1:
synchronized(xlock) {

  x = x + 1;

}

Thread 2:
synchronized(xlock) {

  x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait
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Synchronized
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Thread 1:
synchronized(xlock) {

  x = x + 1;

}

Thread 2:
synchronized(xlock) {

  x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait

Waiting
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Synchronized
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Thread 1:
synchronized(xlock) {

  x = x + 1;

}

Thread 2:
synchronized(xlock) {

  x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait

Waiting

5
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Synchronized
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Thread 1:
synchronized(xlock) {

  x = x + 1;

}

Thread 2:
synchronized(xlock) {
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4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
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Waiting

5
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Synchronized

14/05/2025School of Computing    |     COMP1110/6710 2025 S1

Thread 1:
synchronized(xlock) {

  x = x + 1;

}

Thread 2:
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Synchronized
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Thread 1:
synchronized(xlock) {

  x = x + 1;

}

Thread 2:
synchronized(xlock) {

  x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait
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Synchronized
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Thread 1:
synchronized(xlock) {

  x = x + 1;

}

Thread 2:
synchronized(xlock) {

  x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Still two possible values
for x, but at least not
nore than that

510
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Beware: Deadlocks
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Thread 1:
synchronized(a) {

  synchronized(b) {

    …

  }

}

Thread 2:
synchronized(b) {

  synchronized(a) {

    …

  }

}

a b

WaitingWaiting

Threads are waiting for
each other – will never
continue…

General Strategy:
always synchronize on
objects in the same order
in all threads
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- Dividing up work, where N threads can do work ~N times as fast

- Responsive interfaces, running background work separately

- Servers that handle multiple clients

23

Threads - Applications
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- Concurrency arbitrary interleaves actions from different Threads

- This may produce weird results, or violate invariants

- Use synchronization constructs to limit the possible interleavings

- Beware of over-synchronizing:
- Danger of deadlocks
- Loss of valid concurrency

24

Threads - Summary
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                                                iivv form basic mental models of how computer 
programs execute and interact with their environment. 

Students will learn to use an industrial-strength object-oriented 
programming language and form basic mental models of how computer 
programs execute and interact with their environment. The course 
focuses on key aspects of solving programming problems: reasoning 
about a problem description to design appropriate data representations 
and function/method descriptions, to find examples, to write, test, 
debug, and otherwise evaluate the relevant code, and to present and 
defend their approach.

What Are We Here For?
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form basic mental 
models of how 
computer programs 
execute and interact 
with their 
environment. 

What Are We Here For?
- The Command Line
- Command Line Arguments
- Printing / Reading from Standard Input
- File Systems / File Operations
- Compile-Time vs. Run-Time

- Expressions, Statements & Functions
- Control Flow: 

- Left-to-Right, Inside-Out, Top-Down
- Control Flow Constructs

- Mutable State / Stack vs. Heap

- Testing & Debugging
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Ultimately, we want to get a computer to do something for us.

Computer Science is about all aspects of how to best do that.

This requires:

- Attention to details – computers are sticklers for details

- Understanding requirements

- Knowing how to run an test your code

28

Working Code

14/05/2025School of Computing    |     COMP1110/6710 2025 S1



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Code is not just written for computers to run!

It is also written for people* to read

- When they want to convince themselves that it does what it should

- When they need to add/change something

- When they just want to know how/why it works

* This includes you a week later

29

“It Works” Is Not Enough
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What Are We Here For?
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The course focuses on key aspects of solving programming problems: 
reasoning about a problem description to design appropriate data 
representations and function/method descriptions, to find examples, to 
write, test, debug, and otherwise evaluate the relevant code, and to 
present and defend their approach.

Sound familiar?
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The shape of the data determines the shape of the code!

How you represent the data that you work with hugely influences how 
easy or hard certain parts of your desired functionality will be to 
implement, and other characteristics of your code.

31

Data Design
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/** A Student is a record that contains key information about an
  * ANU student. Examples:
  * - Lisa Studywoman, u1234567, BAC
  * - Paul Masterson, u7654321, MCOMP
  * @param name – the name of the student, a non-empty String
  * @param uid – a UID, identifying the student
  * @param program – the student’s degree program
  */
record Student(String name, String uid, String program) {}

32

Data Design - Interpretations
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We did this from the start:

The fields of the record

Overall purpose of data definition

Example values

Explanations of
fields

javadoc format,
useful for later
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Data Design - Interpretations
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Why?
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

Specifically, software that calculated 
the total impulse produced by thruster 
firings produced results in pound-force 
seconds. The trajectory calculation 
software then used these results – 
expected to be in newton-seconds 
(incorrect by a factor of 4.45) – to 
update the predicted position of the 
spacecraft.

According to NASA, the cost of the mission was $327.6 M ($571.41 M in 2023)

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure
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Functional style:
sealed interfaces + records

- Easy to add new functions

- More effort to add new kinds
of data

34

Data Design – The Expression Problem
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OO style:
interfaces + classes

- Easy to add new kinds of data

- More effort to add new 
methods
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Arrays/ArrayLists:

- Constant-time access

- Linear-time add/insert/remove

35

Data Design – ADT Implementations
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Linked Lists:

- Constant-time insertion/deletion

- Linear-time access

In general, trade-offs depend on application!
(In practice, ArrayList is usually the safer choice)
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In Functional Java: usually via generalized Itemizations

At the core of Object-Oriented programming: 

- Function Abstraction

- Type Abstraction

- Data Abstraction

All in one!

36

Data Design - Abstraction
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The shape of the interface determines the shape of the code!

- Interfaces & Abstract Classes
- Encapsulation/Access Modifiers
- Iterators 
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The “external” interface is often fixed, because other people depend on 
it.

But how you design your helper functions makes a huge difference.

Don’t repeat yourself! Consider the possibilities for abstraction:

- Value Abstraction

- Type Abstraction

- Functional Abstraction

- Subtyping/Inheritance

But don’t abstract prematurely!
37

Signature & Purpose Statement
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The shape of the interface determines the shape of the code!

As always, document your
choices so other people (including
you in the future) understand what’s
going on!
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The first key test: do you understand what should be happening here?

Having concrete examples both guides you in what code to write, and 
how to evaluate it afterward.

Key point: think of corner-cases! Does the function behave uniformly 
over all inputs, or are there differences? How do they play out?

38

Examples
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Going forward, this is the least critical part of the Design Recipe.

Its two main purposes were:

- To give you a small menu of options to choose from, making it easier 
to make decisions

- To limit the overall size and complexity of the functions you write.
This should be the main legacy of this step for you: keep the various 
parts of your code as simple, small, and independent as possible!

39

Design Strategy
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See other slides ☺

40

Implementation
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Remember: Working Code

Tests are no guarantee that your code is perfect, but if you do it well, 
you can find lots of potential bugs (or better: see that they are not 
there).

Tests also validate your examples, confirming your understanding of 
the overall task.

41

Tests
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(Structural) Recursion

- Follows the shape of the data

- Easy to reason about
- Base Cases
- If you know the solutions for
   smallers case, how do you
   combine them for a bigger
   case?

- Unwieldy with some stateful
data structures

42

Working with Arbitrary-Sized Data
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At the core of every interesting program

Iteration

- More natural when working with 
arrays or generative recursion 
(when there is no obvious data 
structure to traverse)

- Less easy to reason about

- Think about termination!
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- Very common, but also common source of bugs

- Know what’s where: the stack or the heap?

- Be clear about the invariants of your data definitions!

- Be clear about the effects your code has on shared state!

43

Mutable State
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Mutable State – A Journey
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Every variable 
stands for a single 

value within its 
scope

Every variable 
stands for a box 

whose contents may 
change, and the 

things they point to 
may change, tooThings in those 

boxes may change 
while you are 

working on them 
More fun
in later
courses!

We revisited this for:
- Generics
- Closures
- Concurrency
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Polymorphism / Type Abstraction
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Subtyping

- Core to OO

- Abstracts commonalities in 
interfaces – concrete type does 
not matter when using interface

- Dynamic Dispatch/Overriding

- Loses static type information

Generics

- Preserves static type 
information

- For when actual types don’t 
matter to generic code, but to 
the user

- In Java: compile-time only
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Not that interesting on their own.

But they combine:

- Mutable State

- Iteration

- Multiple Kinds of Abstraction

An excellent way to reinforce all those concepts!

46

Iterators
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Really: three difficulty levels

47

Abstract Data Types
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Key common pattern for most programs

Lists/Maps:

- Usually simple 
Iteration/Recursion

- Very standardized

Trees:

- More general 
structure

- Still relatively 
standard recursion, 
but also BFS/DFS

- Lots of different 
shapes

Graphs:

- Yet More general 
structure

- More complicated 
traversal

- Possible loops
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- Standard Interview Question

- Key consideration in large system design

- Important active research areas in Computer Science

- Huge difference in costs!

48

Time Complexity
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Plase fill them out (opens next week)!

In giving qualitative feedback, please be specific about issues you had 
and things you think would improve the course!
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