
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

T
E

Q
S

A
 P

R
O

V
ID

E
R

 ID
:P

R
V

12
0

0
2

(A
U

S
T

R
A

LI
A

N
 U

N
IV

E
R

S
IT

Y
)

C
R

IC
O

S
 P

R
O

V
ID

E
R

 C
O

D
E

: 0
0

12
0

C

Concurrency

Computers are not perfect at multitasking, either

2 14/05/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Means: not necessarily doing them in a fixed order, or in order at all.

Doing Things Concurrently

Task A

Task B Task A

Task B

Task A
Task A

Task A

Task A

Task B

Task B

Task B
Task B

Task A

Task A

Task A

Task A

Task B

Task B

Task B

Task B Usually, there
needs to be some
order, so within
task A and task B,
the order of
operations stays
the same.

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Your computer is likely running several programs concurrently right
now.

Your phone is likely running several programs concurrently right now.

Your watch/TV/dishwasher/… may be running several programs
concurrently right now.

In fact, they may be running those programs in parallel.

4

We See That All The Time

14/05/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Concurrency … doing things not necessarily in order, but independently
of each other. E.g. also time-slicing.

Parallelism … doing things actually at the same time, say with multiple
processors/cores.

Most problems that need solving already come in with concurrency;
parallelism just makes some problems more acute (e.g. without
parallelism, you can assume that only one “basic” operation can happen
at the same time, but that’s usually not very helpful).
5

Concurrency vs. Parallelism

14/05/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Process … a separate program executed on your computer. The task of
the operating system is to ensure that all processes can work
independently while sharing hardware resources and files.

[Demo – two Java process read and write a file]

6

Concurrent Processes

14/05/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

A single process may have multiple “threads”. Each thread has its own
stack, but all threads share the same heap.

(similarly, each process has its own memory (stack(s) + heap), but they
all share the same file system)

[Demo: A Java program with multiple threads]

7

Concurrency within Programs

14/05/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

interface Runnable {

 void run();

}

8

Creating a new Thread

14/05/2025School of Computing | COMP1110/6710 2025 S1

Runnable r = …;

Thread t = new Thread(r);

t.start();

//Optional:

//wait for t to finish

t.join();

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

There are lots of little steps in evaluating expressions.

For example, while evaluating
x = x + 1;

We first calculate x + 1, and then write the result back to x.

But during that calculation, x still has its old value.

9

Problem:

14/05/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Thread 1:

x = x + 1;

10

Problem:

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 2:

x = x * 2;

Global variable x

4

1. Retrieve x → 4
2. Calculate x + 1 → 5
5. Store 5 in x

3. Retrieve x → 4
4. Calculate x * 2 → 8

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Thread 1:

x = x + 1;

11

Problem:

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 2:

x = x * 2;

Global variable x

5

1. Retrieve x → 4
2. Calculate x + 1 → 5
5. Store 5 in x

3. Retrieve x → 4
4. Calculate x * 2 → 8
6. Store 8 in x

?

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Thread 1:

x = x + 1;

12

Problem:

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 2:

x = x * 2;

Global variable x

5

1. Retrieve x → 4
2. Calculate x + 1 → 5
5. Store 5 in x

3. Retrieve x → 4
4. Calculate x * 2 → 8
6. Store 8 in x

?

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Thread 1:

x = x + 1;

13

Problem:

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 2:

x = x * 2;

Global variable x

8

1. Retrieve x → 4
2. Calculate x + 1 → 5
5. Store 5 in x

3. Retrieve x → 4
4. Calculate x * 2 → 8
6. Store 8 in x

?“Lost update”

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

In Java, via synchronized-blocks:

synchronized(sharedLockObj) {

 …

}

14

Solution: Mutual Exclusion

14/05/2025School of Computing | COMP1110/6710 2025 S1

Reference to some
object on the heap

Only one thread can be in a
synchronized-block (also called a
“critical section” for the same heap
object at the same time.
Others have to wait.

Shorthand:
synchronized [Type] foo(…) {

 …

}

~

[Type] foo(…) {

 synchronized(this) {

 …

 }}

Or special “class” object
for static methods

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

15

Synchronized

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 1:
synchronized(xlock) {

 x = x + 1;

}

Thread 2:
synchronized(xlock) {

 x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

16

Synchronized

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 1:
synchronized(xlock) {

 x = x + 1;

}

Thread 2:
synchronized(xlock) {

 x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait

Waiting

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

17

Synchronized

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 1:
synchronized(xlock) {

 x = x + 1;

}

Thread 2:
synchronized(xlock) {

 x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait

Waiting

5

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

18

Synchronized

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 1:
synchronized(xlock) {

 x = x + 1;

}

Thread 2:
synchronized(xlock) {

 x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait

Waiting

5

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

19

Synchronized

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 1:
synchronized(xlock) {

 x = x + 1;

}

Thread 2:
synchronized(xlock) {

 x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait

5

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

20

Synchronized

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 1:
synchronized(xlock) {

 x = x + 1;

}

Thread 2:
synchronized(xlock) {

 x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Whichever thread enters
the synchronized block first
gets to finish it;
the other thread has
to wait

510

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

21

Synchronized

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 1:
synchronized(xlock) {

 x = x + 1;

}

Thread 2:
synchronized(xlock) {

 x = x * 2;

}

Global variable x

4

Global variable xlock (= new Object())

Still two possible values
for x, but at least not
nore than that

510

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

22

Beware: Deadlocks

14/05/2025School of Computing | COMP1110/6710 2025 S1

Thread 1:
synchronized(a) {

 synchronized(b) {

 …

 }

}

Thread 2:
synchronized(b) {

 synchronized(a) {

 …

 }

}

a b

WaitingWaiting

Threads are waiting for
each other – will never
continue…

General Strategy:
always synchronize on
objects in the same order
in all threads

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Dividing up work, where N threads can do work ~N times as fast

- Responsive interfaces, running background work separately

- Servers that handle multiple clients

23

Threads - Applications

14/05/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Concurrency arbitrary interleaves actions from different Threads

- This may produce weird results, or violate invariants

- Use synchronization constructs to limit the possible interleavings

- Beware of over-synchronizing:
- Danger of deadlocks
- Loss of valid concurrency

24

Threads - Summary

14/05/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

Structured
Programming
The Grand Tour

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

 iivv form basic mental models of how computer
programs execute and interact with their environment.

Students will learn to use an industrial-strength object-oriented
programming language and form basic mental models of how computer
programs execute and interact with their environment. The course
focuses on key aspects of solving programming problems: reasoning
about a problem description to design appropriate data representations
and function/method descriptions, to find examples, to write, test,
debug, and otherwise evaluate the relevant code, and to present and
defend their approach.

What Are We Here For?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

form basic mental
models of how
computer programs
execute and interact
with their
environment.

What Are We Here For?
- The Command Line
- Command Line Arguments
- Printing / Reading from Standard Input
- File Systems / File Operations
- Compile-Time vs. Run-Time

- Expressions, Statements & Functions
- Control Flow:

- Left-to-Right, Inside-Out, Top-Down
- Control Flow Constructs

- Mutable State / Stack vs. Heap

- Testing & Debugging

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Ultimately, we want to get a computer to do something for us.

Computer Science is about all aspects of how to best do that.

This requires:

- Attention to details – computers are sticklers for details

- Understanding requirements

- Knowing how to run an test your code

28

Working Code

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Code is not just written for computers to run!

It is also written for people* to read

- When they want to convince themselves that it does what it should

- When they need to add/change something

- When they just want to know how/why it works

* This includes you a week later

29

“It Works” Is Not Enough

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

30

What Are We Here For?

14/05/2025School of Computing | COMP1110/6710 2025 S1

The course focuses on key aspects of solving programming problems:
reasoning about a problem description to design appropriate data
representations and function/method descriptions, to find examples, to
write, test, debug, and otherwise evaluate the relevant code, and to
present and defend their approach.

Sound familiar?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

The shape of the data determines the shape of the code!

How you represent the data that you work with hugely influences how
easy or hard certain parts of your desired functionality will be to
implement, and other characteristics of your code.

31

Data Design

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** A Student is a record that contains key information about an
 * ANU student. Examples:
 * - Lisa Studywoman, u1234567, BAC
 * - Paul Masterson, u7654321, MCOMP
 * @param name – the name of the student, a non-empty String
 * @param uid – a UID, identifying the student
 * @param program – the student’s degree program
 */
record Student(String name, String uid, String program) {}

32

Data Design - Interpretations

14/05/2025School of Computing | COMP1110/6710 2025 S1

We did this from the start:

The fields of the record

Overall purpose of data definition

Example values

Explanations of
fields

javadoc format,
useful for later

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

33

Data Design - Interpretations

14/05/2025School of Computing | COMP1110/6710 2025 S1

Why?
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

Specifically, software that calculated
the total impulse produced by thruster
firings produced results in pound-force
seconds. The trajectory calculation
software then used these results –
expected to be in newton-seconds
(incorrect by a factor of 4.45) – to
update the predicted position of the
spacecraft.

According to NASA, the cost of the mission was $327.6 M ($571.41 M in 2023)

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional style:
sealed interfaces + records

- Easy to add new functions

- More effort to add new kinds
of data

34

Data Design – The Expression Problem

14/05/2025School of Computing | COMP1110/6710 2025 S1

OO style:
interfaces + classes

- Easy to add new kinds of data

- More effort to add new
methods

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Arrays/ArrayLists:

- Constant-time access

- Linear-time add/insert/remove

35

Data Design – ADT Implementations

14/05/2025School of Computing | COMP1110/6710 2025 S1

Linked Lists:

- Constant-time insertion/deletion

- Linear-time access

In general, trade-offs depend on application!
(In practice, ArrayList is usually the safer choice)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

In Functional Java: usually via generalized Itemizations

At the core of Object-Oriented programming:

- Function Abstraction

- Type Abstraction

- Data Abstraction

All in one!

36

Data Design - Abstraction

14/05/2025School of Computing | COMP1110/6710 2025 S1

The shape of the interface determines the shape of the code!

- Interfaces & Abstract Classes
- Encapsulation/Access Modifiers
- Iterators

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

The “external” interface is often fixed, because other people depend on
it.

But how you design your helper functions makes a huge difference.

Don’t repeat yourself! Consider the possibilities for abstraction:

- Value Abstraction

- Type Abstraction

- Functional Abstraction

- Subtyping/Inheritance

But don’t abstract prematurely!
37

Signature & Purpose Statement

14/05/2025School of Computing | COMP1110/6710 2025 S1

The shape of the interface determines the shape of the code!

As always, document your
choices so other people (including
you in the future) understand what’s
going on!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

The first key test: do you understand what should be happening here?

Having concrete examples both guides you in what code to write, and
how to evaluate it afterward.

Key point: think of corner-cases! Does the function behave uniformly
over all inputs, or are there differences? How do they play out?

38

Examples

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Going forward, this is the least critical part of the Design Recipe.

Its two main purposes were:

- To give you a small menu of options to choose from, making it easier
to make decisions

- To limit the overall size and complexity of the functions you write.
This should be the main legacy of this step for you: keep the various
parts of your code as simple, small, and independent as possible!

39

Design Strategy

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

See other slides ☺

40

Implementation

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Remember: Working Code

Tests are no guarantee that your code is perfect, but if you do it well,
you can find lots of potential bugs (or better: see that they are not
there).

Tests also validate your examples, confirming your understanding of
the overall task.

41

Tests

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

(Structural) Recursion

- Follows the shape of the data

- Easy to reason about
- Base Cases
- If you know the solutions for
 smallers case, how do you
 combine them for a bigger
 case?

- Unwieldy with some stateful
data structures

42

Working with Arbitrary-Sized Data

14/05/2025School of Computing | COMP1110/6710 2025 S1

At the core of every interesting program

Iteration

- More natural when working with
arrays or generative recursion
(when there is no obvious data
structure to traverse)

- Less easy to reason about

- Think about termination!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Very common, but also common source of bugs

- Know what’s where: the stack or the heap?

- Be clear about the invariants of your data definitions!

- Be clear about the effects your code has on shared state!

43

Mutable State

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

44

Mutable State – A Journey

14/05/2025School of Computing | COMP1110/6710 2025 S1

Every variable
stands for a single

value within its
scope

Every variable
stands for a box

whose contents may
change, and the

things they point to
may change, tooThings in those

boxes may change
while you are

working on them
More fun
in later
courses!

We revisited this for:
- Generics
- Closures
- Concurrency

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

45

Polymorphism / Type Abstraction

14/05/2025School of Computing | COMP1110/6710 2025 S1

Subtyping

- Core to OO

- Abstracts commonalities in
interfaces – concrete type does
not matter when using interface

- Dynamic Dispatch/Overriding

- Loses static type information

Generics

- Preserves static type
information

- For when actual types don’t
matter to generic code, but to
the user

- In Java: compile-time only

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Not that interesting on their own.

But they combine:

- Mutable State

- Iteration

- Multiple Kinds of Abstraction

An excellent way to reinforce all those concepts!

46

Iterators

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Really: three difficulty levels

47

Abstract Data Types

14/05/2025School of Computing | COMP1110/6710 2025 S1

Key common pattern for most programs

Lists/Maps:

- Usually simple
Iteration/Recursion

- Very standardized

Trees:

- More general
structure

- Still relatively
standard recursion,
but also BFS/DFS

- Lots of different
shapes

Graphs:

- Yet More general
structure

- More complicated
traversal

- Possible loops

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Standard Interview Question

- Key consideration in large system design

- Important active research areas in Computer Science

- Huge difference in costs!

48

Time Complexity

14/05/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Plase fill them out (opens next week)!

In giving qualitative feedback, please be specific about issues you had
and things you think would improve the course!

49

SELTs

14/05/2025School of Computing | COMP1110/6710 2025 S1

	1A
	Slide 1
	Slide 2: Concurrency
	Slide 3: Doing Things Concurrently
	Slide 4: We See That All The Time
	Slide 5: Concurrency vs. Parallelism
	Slide 6: Concurrent Processes
	Slide 7: Concurrency within Programs
	Slide 8: Creating a new Thread
	Slide 9: Problem:
	Slide 10: Problem:
	Slide 11: Problem:
	Slide 12: Problem:
	Slide 13: Problem:
	Slide 14: Solution: Mutual Exclusion
	Slide 15: Synchronized
	Slide 16: Synchronized
	Slide 17: Synchronized
	Slide 18: Synchronized
	Slide 19: Synchronized
	Slide 20: Synchronized
	Slide 21: Synchronized
	Slide 22: Beware: Deadlocks
	Slide 23: Threads - Applications
	Slide 24: Threads - Summary
	Slide 25: Structured Programming
	Slide 26: What Are We Here For?
	Slide 27: What Are We Here For?
	Slide 28: Working Code
	Slide 29: “It Works” Is Not Enough
	Slide 30: What Are We Here For?
	Slide 31: Data Design
	Slide 32: Data Design - Interpretations
	Slide 33: Data Design - Interpretations
	Slide 34: Data Design – The Expression Problem
	Slide 35: Data Design – ADT Implementations
	Slide 36: Data Design - Abstraction
	Slide 37: Signature & Purpose Statement
	Slide 38: Examples
	Slide 39: Design Strategy
	Slide 40: Implementation
	Slide 41: Tests
	Slide 42: Working with Arbitrary-Sized Data
	Slide 43: Mutable State
	Slide 44: Mutable State – A Journey
	Slide 45: Polymorphism / Type Abstraction
	Slide 46: Iterators
	Slide 47: Abstract Data Types
	Slide 48: Time Complexity
	Slide 49: SELTs

