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[Live Demo]

See https://comp.anu.edu.au/courses/comp1110/notes/git-and-
notebooks/

And https://missing.csail.mit.edu/2020/version-control/
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Git
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https://comp.anu.edu.au/courses/comp1110/notes/git-and-notebooks/
https://comp.anu.edu.au/courses/comp1110/notes/git-and-notebooks/
https://missing.csail.mit.edu/2020/version-control/


Functional Java

Follow along on your laptops!
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void main() {

    println(“Hello World”);

}

Previously in COMP1110

Function Body = Code
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void main() {

    println(“Hello World”);

}

Function Signatures

Function Signature
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void main() {

    println(“Hello World”);

}

Function Signatures
Name

Return Type Arguments

main is a special function – it’s where the program starts running

void is a special type – it is the return type of functions that do
not return anything. We only use it for special functions.
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void main(String... args) {

    println(“Hello World”);

}

Function Signatures
Name

Return Type Arguments

main is a special function – it’s where the program starts running

void is a special type – it is the return type of functions that do
not return anything. We only use it for special functions.

String is the standard type for text of all lengths
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void main(String... args) {

    println(“Hello ” + args[0]);

}

Using a Program Argument

Array Accessor

… and Array Accessors are special constructs for now.
You should only use them in the main function, if at all.
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void main(String... args) {

    println(“Hello ” + args[0]);

}

Statements

What are these for?
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void main(String... args) {

    println(“Hello ” + args[0]);

    println(“How are you?”);

}

Statements

More Statements!

Braces {} enclose Blocks of Statements.
Each Statement is terminated by a ;

Statements
are evaluated

top-to-bottom
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void main(String... args) {

    println(“Hello ” + args[0]);

}

More Functions!

String addBang(String str) {

    return str + “!”;

} A return statement

Not void!
Return statements have to

be the last in a block
Non-void methods need to

return something
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void main(String... args) {

    println(“Hello ” + args[0]);

}

Expressions

String addBang(String str) {

    return str + “!”;

} An expression

Expressions produce values
Statements do not

Both may consume values
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void main(String... args) {

    println(addBang(args[0]));

}

Expressions

String addBang(String str) {

    return str + “!”;

}

Another function call
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void main(String... args) {

    println(addBang(addBang(args[0])));

}

Expressions
String addBang(String str) {

    println(str);

    return str + “!”;

}

And Another function call

Nested expressions,
Like function calls,

Are evaluated inside-out
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void main(String... args) {

  println(addBang(args[0])+addBang(args[1]));

}

Expressions
String addBang(String str) {

    println(str);

    return str + “!”;

}

Two function calls on the same level

Sibling expressions are
evaluated left to right
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import static comp1110.lib.Functions.*;

void main(String... args) {

  println(StringToInt(args[0]) + StringToInt(args[1]));

}
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Importing Stuff
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Download Standard Library from 
https://comp.anu.edu.au/courses/comp1110/notes/functional-java/#the-standard-library 

Import a particular set of functions

A newly available function

https://comp.anu.edu.au/courses/comp1110/notes/functional-java/#the-standard-library
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Basic Data Types
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Type Represents Examples

String Text “” ; “Hello World!”

boolean True/False true ; false

int, long Integer numbers 0 ; 1 ; 2 ; 15; 42 ; 123534; 15l

float, double Floating-Point numbers 0.15 ; 1.0 ; 2352.634 ; 14.0f

char Characters (Unicode) ‘a’ ; ‘ ’ Do not use this where
Precision is important,

e.g. money!
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Control Flow – if Statement
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Statements
are evaluated

top-to-bottom

void main() {

   …

   if(someBoolean) {

      …

   } else {

      …

   }

   …

}

Evaluate these if someBoolean is true

Evaluate these if someBoolean is false

For Functional Java, each branch needs
return statement, and no other statements
may follow
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Control Flow – if Expression
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Expressions are evaluated left-to-right, inside-out

(someBoolean ? expression1 : expression2)

Produce value of expression1 if someBoolean is true,
else Value of expression2

In both cases, the other expression is not evaluated
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Control Flow – switch Statement
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Statements
are evaluated

top-to-bottom

void main() {

   …

   switch(someInteger) {

      case 0: …; return …;

      …

      case 326: …; return …;

      default: …; return …;

   }

}

Evaluate these if 
someInteger is 0

Evaluate these if
none of the 
above match

…

Can be any basic types 
and some others as long as cases match
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Control Flow – switch Expression
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Statements
are evaluated

top-to-bottom

void main() {

   …

   return … switch(someInteger) {

      case 0 -> …;

      …

      case 326 -> …;

      default -> …;

   } … ;

}

Evaluate these if 
someInteger is 0

Evaluate these if
none of the 
above match

…

Can be any basic types 
and some others as long as cases match
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Constants & Intermediate Values
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int MAX_SPEED = 110;

void main(String... args) {

   int speed = StringToInt(args[0]);

   if(speed > MAX_SPEED) {

      println(MAX_SPEED);

   } else {

      println(speed);

   }

}

Global Constant Definition

Intermediate Value Definition
Compare with let-expression

in Haskell



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

24

Basic Operations
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Operator For Operation

+ String, numbers append or plus

- ; * ; / ; % numbers Minus ; times ; divide ;  remainder

! ; && ; || booleans not ; and ; or

The standard library gives you functions like Equals, GreaterThan, LessThan .
For numbers and Booleans, you can also write == ; > ; <



The Design 
Recipe
Step 1. Problem Analysis and Data Design
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Basic Data Types
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Type Represents Examples

String Text “” ; “Hello World!”

boolean True/False true ; false

int, long Integer numbers 0 ; 1 ; 2 ; 15; 42 ; 123534; 15l

float, double Floating-Point numbers 0.15 ; 1.0 ; 2352.634 ; 14.0f

char Characters (Unicode) ‘a’ ; ‘ ’

The standard library adds opaque types: Date, DateTime, Colour, Image



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

/** A TrafficLightState indicates whether traffic can flow in
  * a particular direction at a given point in time.
  */
enum TrafficLightState {
    /** Traffic must stop */
    RED,
    /** Traffic must stop if able */
    YELLOW,
    /** Traffic can go ahead */
    GREEN
}

Enumerations
For when you have a limited number of distinct cases.

Need to have a comment
that explains the data definition overall, 
as well as comment for every case.

This definition enables you to write
TrafficLightState.RED,
TrafficLightState.YELLOW, and
TrafficLightState.GREEN in any
expression location.
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For enumerations, the general scheme is:
// { …

//   return  … switch(x) {

//     case [case1] -> …;

//     […];

//     case [caseN] -> …;

//   } …;

// }

Templates
Every explicit data definition comes with a template

Key Motto:

The shape of the data determines the 
shape of the code!
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For the definition of TrafficLightState from earlier, the template is:
// { …

//   return  … switch(tls) {

//     case RED -> …;

//     case YELLOW -> …;

//     case GREEN -> …;

//   } …;

// }

Template Example: TrafficLightState
Every explicit data definition comes with a template
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/** A CourseResult represents a student’s outcome of taking
  * a course on a coarse level */
enum CourseResult {
    /** Passed the course with one of HD, D, CR, P, PS, CRS */
    PASS, 
    /** Failed the course with one of N, NCN, CRN, WN */
    FAIL, 
    /** Still awaiting a result with one of DA, KU, PX, RC, RP,
      * WA, WF, or no grade yet */
    PENDING, 
    /** Withdrew from the course without failure through WD, WL */
    WITHDRAWN, 
    /** Some other special kind of result (e.g. EE) */
    OTHER
}

30

Exercise - what’s the template for:
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/** A Student is a record that contains key information about an
  * ANU student. Examples:
  * - Lisa Studywoman, u1234567, BAC
  * - Paul Masterson, u7654321, MCOMP
  * @param name – the name of the student, a non-empty String
  * @param uid – a UID, identifying the student
  * @param program – the student’s degree program
  */
record Student(String name, String uid, String program) {}

31

Records
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For when data consists of more than a single piece of information.

The fields of the record

Overall purpose of data definition

Example values

Explanations of
fields

javadoc format,
useful for later
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For records on their own, the general scheme is:
// { … x.f1() … […] … x.fN() … }

This assumes a record X with N fields of names f1…fN .

All we are saying here is that code may access the fields of a record.

Note: templates to not restrict the order or number of such field 
accesses. You can arbitrarily copy, move, and remove them.

Record Templates – a bit boring
Every explicit data definition comes with a template
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To create a record, use the expression form:
new RecordName(valueForField1,…,valueForFieldN)

For example:
new Student(“Lisa Studywoman”, “u1234567”, “BAC”)

To use, access fields:
Student s = …;

println(s.name()+” studies “+s.program());
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Records – Creating and Using
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The Design 
Recipe
Step 2. Function Signature and Purpose Statement
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void main() {

    println(“Hello World”);

}

Recall

Function Signature



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Java uses the Java signature of your function to check your code.

The Java signature can only be on the level of granularity that Java’s 
type system supports.

E.g.:

int getSize(Item item) {}

36

Recall: Multiple Audiences
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Are there negative sizes? Java thinks it’s possible
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/** pizzaShares returns how much of pizza (in surface area)
  * with a given diameter everyone in a group of a given size
  * gets when dividing the pizza evenly.
  * @param diameter – the diameter of the pizza in inches,
  * a positive number
  * @param groupSize – the number of people in the group > 0
  * @return how many square inches of pizza (rounded down) every
  * person in the group will get (>= 0)
  */
int pizzaShares(int diameter, int groupSize) {
}

37

Signature & Purpose Statement
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Purpose Statement

Java Signature

Human Signature



The Design 
Recipe
Step 4. Design Strategy

(yes, we skipped Step 3 until next week)
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Your goal is to always define small, simple functions that do at most 
one thing. If things get too complicated, think of a helper function that 
can do part of the job, and add it to the wishlist.

Design Strategies help you keep some discipline around this.

Design Strategies
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/**
 * Adds up two numbers
 * Examples: [skipped]
 * Strategy: Simple Expression
 * @param number1 – the first number
 * @param number2 – the second number
 * @return the sum of number1 and number2
 */
int add(int number1, int number2) {

  return number1 + number2;

}
40

Design Strategy: Simple Expression
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New in Step 4
Describes the shape of Step 5

Happens in Step 5

For when the code will just be a simple expression
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/**
 * Determines whether an integer is square
 * Examples: [skipped]
 * Strategy: Combining Functions
 * @param integer – the integer that is possibly square, >0
 * @return true if integer is square, false if not
 */
boolean isSquare(int integer) {

  int intRoot = RoundInt(Sqrt(integer));

  return Equals(integer, intRoot * intRoot);

}
41

Design Strategy: Combining Functions
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New in Step 4
Describes the shape of Step 5

Happens in Step 5

For when the code will just be a combination of function calls
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/** … * Strategy: Case Distinction … */
TrafficLightState StringToTLS(String str) {

  return switch(str) {

    case “red” -> TrafficLightState.RED;

    case “yellow” -> TrafficLightState.YELLOW;

    case “green” -> TrafficLightState.GREEN;

    default -> DefaultCaseError();

  }

}
42

Design Strategy: Case Distinction
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For when a number of cases need to be distinguished without
an underlying data definition.

Exclude this case in your human signature. Java requires it to be there.
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/** … * Strategy: Template application for TrafficLightState…*/
TrafficLightState Rotate(TrafficLightState tls) { …

  return … switch(tls) {

    case RED -> …;

    case YELLOW -> …;

    case GREEN -> …; 

  } …;

}

43

Design Strategy: Template Application
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For when you need to apply a template.

This is the state after step 4.
We copied the template from the data
definition, and removed the //s .
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• Only ever use ONE template application or case distinction in a 
single function (and not both).

• You can combine either case distinction or template application with 
simple expressions and/or combining functions (and the latter two 
with each other) within reason. Your code needs to stay readable!

• The priority ranking is Template Application ~ Case Distinction > 
Combining Functions > Simple Expression. When documenting your 
chosen strategy, use the highest-ranking one that applies.

• While records have a template, it is fine to see using that as 
combining functions.

44

Combining Design Strategies
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