
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

pollev.com/fabianm
Register for Engagement

Needs ANU Account!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

File Systems and Trees
/

etchome mnt usropt var

[yourname]

Documents Downloads Pictures

…

… … … … …~

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

[Live Demo]

See https://comp.anu.edu.au/courses/comp1110/notes/git-and-
notebooks/

And https://missing.csail.mit.edu/2020/version-control/

3

Git

19/02/2025School of Computing | COMP1110/6710 2025 S1

https://comp.anu.edu.au/courses/comp1110/notes/git-and-notebooks/
https://comp.anu.edu.au/courses/comp1110/notes/git-and-notebooks/
https://missing.csail.mit.edu/2020/version-control/

Functional Java

Follow along on your laptops!

19/02/20254School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main() {

 println(“Hello World”);

}

Previously in COMP1110

Function Body = Code

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main() {

 println(“Hello World”);

}

Function Signatures

Function Signature

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main() {

 println(“Hello World”);

}

Function Signatures
Name

Return Type Arguments

main is a special function – it’s where the program starts running

void is a special type – it is the return type of functions that do
not return anything. We only use it for special functions.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(“Hello World”);

}

Function Signatures
Name

Return Type Arguments

main is a special function – it’s where the program starts running

void is a special type – it is the return type of functions that do
not return anything. We only use it for special functions.

String is the standard type for text of all lengths

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(“Hello ” + args[0]);

}

Using a Program Argument

Array Accessor

… and Array Accessors are special constructs for now.
You should only use them in the main function, if at all.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(“Hello ” + args[0]);

}

Statements

What are these for?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(“Hello ” + args[0]);

 println(“How are you?”);

}

Statements

More Statements!

Braces {} enclose Blocks of Statements.
Each Statement is terminated by a ;

Statements
are evaluated

top-to-bottom

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(“Hello ” + args[0]);

}

More Functions!

String addBang(String str) {

 return str + “!”;

} A return statement

Not void!
Return statements have to

be the last in a block
Non-void methods need to

return something

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(“Hello ” + args[0]);

}

Expressions

String addBang(String str) {

 return str + “!”;

} An expression

Expressions produce values
Statements do not

Both may consume values

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(addBang(args[0]));

}

Expressions

String addBang(String str) {

 return str + “!”;

}

Another function call

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(addBang(addBang(args[0])));

}

Expressions
String addBang(String str) {

 println(str);

 return str + “!”;

}

And Another function call

Nested expressions,
Like function calls,

Are evaluated inside-out

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main(String... args) {

 println(addBang(args[0])+addBang(args[1]));

}

Expressions
String addBang(String str) {

 println(str);

 return str + “!”;

}

Two function calls on the same level

Sibling expressions are
evaluated left to right

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

import static comp1110.lib.Functions.*;

void main(String... args) {

 println(StringToInt(args[0]) + StringToInt(args[1]));

}

17

Importing Stuff

19/02/2025School of Computing | COMP1110/6710 2025 S1

Download Standard Library from
https://comp.anu.edu.au/courses/comp1110/notes/functional-java/#the-standard-library

Import a particular set of functions

A newly available function

https://comp.anu.edu.au/courses/comp1110/notes/functional-java/#the-standard-library

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

18

Basic Data Types

19/02/2025School of Computing | COMP1110/6710 2025 S1

Type Represents Examples

String Text “” ; “Hello World!”

boolean True/False true ; false

int, long Integer numbers 0 ; 1 ; 2 ; 15; 42 ; 123534; 15l

float, double Floating-Point numbers 0.15 ; 1.0 ; 2352.634 ; 14.0f

char Characters (Unicode) ‘a’ ; ‘ ’ Do not use this where
Precision is important,

e.g. money!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

19

Control Flow – if Statement

19/02/2025School of Computing | COMP1110/6710 2025 S1

Statements
are evaluated

top-to-bottom

void main() {

 …

 if(someBoolean) {

 …

 } else {

 …

 }

 …

}

Evaluate these if someBoolean is true

Evaluate these if someBoolean is false

For Functional Java, each branch needs
return statement, and no other statements
may follow

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

20

Control Flow – if Expression

19/02/2025School of Computing | COMP1110/6710 2025 S1

Expressions are evaluated left-to-right, inside-out

(someBoolean ? expression1 : expression2)

Produce value of expression1 if someBoolean is true,
else Value of expression2

In both cases, the other expression is not evaluated

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

21

Control Flow – switch Statement

19/02/2025School of Computing | COMP1110/6710 2025 S1

Statements
are evaluated

top-to-bottom

void main() {

 …

 switch(someInteger) {

 case 0: …; return …;

 …

 case 326: …; return …;

 default: …; return …;

 }

}

Evaluate these if
someInteger is 0

Evaluate these if
none of the
above match

…

Can be any basic types
and some others as long as cases match

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

22

Control Flow – switch Expression

19/02/2025School of Computing | COMP1110/6710 2025 S1

Statements
are evaluated

top-to-bottom

void main() {

 …

 return … switch(someInteger) {

 case 0 -> …;

 …

 case 326 -> …;

 default -> …;

 } … ;

}

Evaluate these if
someInteger is 0

Evaluate these if
none of the
above match

…

Can be any basic types
and some others as long as cases match

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

23

Constants & Intermediate Values

19/02/2025School of Computing | COMP1110/6710 2025 S1

int MAX_SPEED = 110;

void main(String... args) {

 int speed = StringToInt(args[0]);

 if(speed > MAX_SPEED) {

 println(MAX_SPEED);

 } else {

 println(speed);

 }

}

Global Constant Definition

Intermediate Value Definition
Compare with let-expression

in Haskell

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

24

Basic Operations

19/02/2025School of Computing | COMP1110/6710 2025 S1

Operator For Operation

+ String, numbers append or plus

- ; * ; / ; % numbers Minus ; times ; divide ; remainder

! ; && ; || booleans not ; and ; or

The standard library gives you functions like Equals, GreaterThan, LessThan .
For numbers and Booleans, you can also write == ; > ; <

The Design
Recipe
Step 1. Problem Analysis and Data Design

19/02/202525School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

26

Basic Data Types

19/02/2025School of Computing | COMP1110/6710 2025 S1

Type Represents Examples

String Text “” ; “Hello World!”

boolean True/False true ; false

int, long Integer numbers 0 ; 1 ; 2 ; 15; 42 ; 123534; 15l

float, double Floating-Point numbers 0.15 ; 1.0 ; 2352.634 ; 14.0f

char Characters (Unicode) ‘a’ ; ‘ ’

The standard library adds opaque types: Date, DateTime, Colour, Image

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** A TrafficLightState indicates whether traffic can flow in
 * a particular direction at a given point in time.
 */
enum TrafficLightState {
 /** Traffic must stop */
 RED,
 /** Traffic must stop if able */
 YELLOW,
 /** Traffic can go ahead */
 GREEN
}

Enumerations
For when you have a limited number of distinct cases.

Need to have a comment
that explains the data definition overall,
as well as comment for every case.

This definition enables you to write
TrafficLightState.RED,
TrafficLightState.YELLOW, and
TrafficLightState.GREEN in any
expression location.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

For enumerations, the general scheme is:
// { …

// return … switch(x) {

// case [case1] -> …;

// […];

// case [caseN] -> …;

// } …;

// }

Templates
Every explicit data definition comes with a template

Key Motto:

The shape of the data determines the
shape of the code!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

For the definition of TrafficLightState from earlier, the template is:
// { …

// return … switch(tls) {

// case RED -> …;

// case YELLOW -> …;

// case GREEN -> …;

// } …;

// }

Template Example: TrafficLightState
Every explicit data definition comes with a template

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** A CourseResult represents a student’s outcome of taking
 * a course on a coarse level */
enum CourseResult {
 /** Passed the course with one of HD, D, CR, P, PS, CRS */
 PASS,
 /** Failed the course with one of N, NCN, CRN, WN */
 FAIL,
 /** Still awaiting a result with one of DA, KU, PX, RC, RP,
 * WA, WF, or no grade yet */
 PENDING,
 /** Withdrew from the course without failure through WD, WL */
 WITHDRAWN,
 /** Some other special kind of result (e.g. EE) */
 OTHER
}

30

Exercise - what’s the template for:

19/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** A Student is a record that contains key information about an
 * ANU student. Examples:
 * - Lisa Studywoman, u1234567, BAC
 * - Paul Masterson, u7654321, MCOMP
 * @param name – the name of the student, a non-empty String
 * @param uid – a UID, identifying the student
 * @param program – the student’s degree program
 */
record Student(String name, String uid, String program) {}

31

Records

19/02/2025School of Computing | COMP1110/6710 2025 S1

For when data consists of more than a single piece of information.

The fields of the record

Overall purpose of data definition

Example values

Explanations of
fields

javadoc format,
useful for later

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

For records on their own, the general scheme is:
// { … x.f1() … […] … x.fN() … }

This assumes a record X with N fields of names f1…fN .

All we are saying here is that code may access the fields of a record.

Note: templates to not restrict the order or number of such field
accesses. You can arbitrarily copy, move, and remove them.

Record Templates – a bit boring
Every explicit data definition comes with a template

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

To create a record, use the expression form:
new RecordName(valueForField1,…,valueForFieldN)

For example:
new Student(“Lisa Studywoman”, “u1234567”, “BAC”)

To use, access fields:
Student s = …;

println(s.name()+” studies “+s.program());

33

Records – Creating and Using

19/02/2025School of Computing | COMP1110/6710 2025 S1

The Design
Recipe
Step 2. Function Signature and Purpose Statement

19/02/202534School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main() {

 println(“Hello World”);

}

Recall

Function Signature

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Java uses the Java signature of your function to check your code.

The Java signature can only be on the level of granularity that Java’s
type system supports.

E.g.:

int getSize(Item item) {}

36

Recall: Multiple Audiences

19/02/2025School of Computing | COMP1110/6710 2025 S1

Are there negative sizes? Java thinks it’s possible

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** pizzaShares returns how much of pizza (in surface area)
 * with a given diameter everyone in a group of a given size
 * gets when dividing the pizza evenly.
 * @param diameter – the diameter of the pizza in inches,
 * a positive number
 * @param groupSize – the number of people in the group > 0
 * @return how many square inches of pizza (rounded down) every
 * person in the group will get (>= 0)
 */
int pizzaShares(int diameter, int groupSize) {
}

37

Signature & Purpose Statement

19/02/2025School of Computing | COMP1110/6710 2025 S1

Purpose Statement

Java Signature

Human Signature

The Design
Recipe
Step 4. Design Strategy

(yes, we skipped Step 3 until next week)

19/02/202538School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Your goal is to always define small, simple functions that do at most
one thing. If things get too complicated, think of a helper function that
can do part of the job, and add it to the wishlist.

Design Strategies help you keep some discipline around this.

Design Strategies

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/**
 * Adds up two numbers
 * Examples: [skipped]
 * Strategy: Simple Expression
 * @param number1 – the first number
 * @param number2 – the second number
 * @return the sum of number1 and number2
 */
int add(int number1, int number2) {

 return number1 + number2;

}
40

Design Strategy: Simple Expression

19/02/2025School of Computing | COMP1110/6710 2025 S1

New in Step 4
Describes the shape of Step 5

Happens in Step 5

For when the code will just be a simple expression

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/**
 * Determines whether an integer is square
 * Examples: [skipped]
 * Strategy: Combining Functions
 * @param integer – the integer that is possibly square, >0
 * @return true if integer is square, false if not
 */
boolean isSquare(int integer) {

 int intRoot = RoundInt(Sqrt(integer));

 return Equals(integer, intRoot * intRoot);

}
41

Design Strategy: Combining Functions

19/02/2025School of Computing | COMP1110/6710 2025 S1

New in Step 4
Describes the shape of Step 5

Happens in Step 5

For when the code will just be a combination of function calls

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** … * Strategy: Case Distinction … */
TrafficLightState StringToTLS(String str) {

 return switch(str) {

 case “red” -> TrafficLightState.RED;

 case “yellow” -> TrafficLightState.YELLOW;

 case “green” -> TrafficLightState.GREEN;

 default -> DefaultCaseError();

 }

}
42

Design Strategy: Case Distinction

19/02/2025School of Computing | COMP1110/6710 2025 S1

For when a number of cases need to be distinguished without
an underlying data definition.

Exclude this case in your human signature. Java requires it to be there.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** … * Strategy: Template application for TrafficLightState…*/
TrafficLightState Rotate(TrafficLightState tls) { …

 return … switch(tls) {

 case RED -> …;

 case YELLOW -> …;

 case GREEN -> …;

 } …;

}

43

Design Strategy: Template Application

19/02/2025School of Computing | COMP1110/6710 2025 S1

For when you need to apply a template.

This is the state after step 4.
We copied the template from the data
definition, and removed the //s .

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

• Only ever use ONE template application or case distinction in a
single function (and not both).

• You can combine either case distinction or template application with
simple expressions and/or combining functions (and the latter two
with each other) within reason. Your code needs to stay readable!

• The priority ranking is Template Application ~ Case Distinction >
Combining Functions > Simple Expression. When documenting your
chosen strategy, use the highest-ranking one that applies.

• While records have a template, it is fine to see using that as
combining functions.

44

Combining Design Strategies

19/02/2025School of Computing | COMP1110/6710 2025 S1

	1A
	Slide 1
	Slide 2: File Systems and Trees
	Slide 3: Git
	Slide 4: Functional Java
	Slide 5: Previously in COMP1110
	Slide 6: Function Signatures
	Slide 7: Function Signatures
	Slide 8: Function Signatures
	Slide 9: Using a Program Argument
	Slide 10: Statements
	Slide 11: Statements
	Slide 12: More Functions!
	Slide 13: Expressions
	Slide 14: Expressions
	Slide 15: Expressions
	Slide 16: Expressions
	Slide 17: Importing Stuff
	Slide 18: Basic Data Types
	Slide 19: Control Flow – if Statement
	Slide 20: Control Flow – if Expression
	Slide 21: Control Flow – switch Statement
	Slide 22: Control Flow – switch Expression
	Slide 23: Constants & Intermediate Values
	Slide 24: Basic Operations
	Slide 25: The Design Recipe
	Slide 26: Basic Data Types
	Slide 27: Enumerations
	Slide 28: Templates
	Slide 29: Template Example: TrafficLightState
	Slide 30: Exercise - what’s the template for:
	Slide 31: Records
	Slide 32: Record Templates – a bit boring
	Slide 33: Records – Creating and Using
	Slide 34: The Design Recipe
	Slide 35: Recall
	Slide 36: Recall: Multiple Audiences
	Slide 37: Signature & Purpose Statement
	Slide 38: The Design Recipe
	Slide 39: Design Strategies
	Slide 40: Design Strategy: Simple Expression
	Slide 41: Design Strategy: Combining Functions
	Slide 42: Design Strategy: Case Distinction
	Slide 43: Design Strategy: Template Application
	Slide 44: Combining Design Strategies

