Structured Programming

o~

OMP1110/671Q.

R L2

2\ ¥

\;\‘_ > - .
; . 4 ﬁﬂ@"ﬂ- Needs ANU Accth. h:
' : A

1 g
pollev.com/fabianm

L / o " . - o ! -
.] - - B _ias i
l‘ : w T d I :‘- s ' ») 4 l J = -
- A Register for Engagement ' ' " '
¥ ..M

Sign up as a mentor or a
mentee below!

Admin

- Classrepresentatives (COMP6710) - apply by today COB

- Reminder: Follow the Design Recipe!
- gitlab-ClI file available for P1

- We're working on increasing drop-in capacity
- P1Submission

We're hoping to get CWAC available soon (check Ed for announcements)
Otherwise, use Office form, and we’'ll release some way of using assignment variables if necessary

By default, latest pushed commit before deadline will be tested and used for code walks

OOOOOOOOOOOOOOOOOOOOOOOO

The Testing Interface

Two kinds of tests: yours and ours
You can imagine that our test assertions look like:

testEqual(new Nothing<Date>(),
nextSalaryIncrease(
makeStudent(“Jen”, GetDate(2005, 4, 4))));

ing | COMP1110/67102025S1 o 926/02/2025 ¢ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
4 School of Computing | COMP1110/6710 2025 St 26/02/2025 TEQGSAPROVDERID PR e

)ﬁ}) =

Finishing up: World Program Start

[Live Demo]

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Fork and clone the comp1110-2025s1-workshops project.

Pra ctice Create a folder “ws2b”, and work in “World.java” in there.
Commit and push when you are done.

Design a World Program in stages.
Stage 1: the player controls a rectangle that starts in the middle of the world,
and can be moved up, down, left, and right with the arrow keys.

Stage 2: on a click, the square turns into a circle. On another click, the circle
turns back into a rectangle. The circle can move just like the rectangle.

26/02/2025 ~ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
oooooooooooooooooooooooo

6 School of Computing | COMP1110/6710 2025 St

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

Input/Output

Part 2 - Reading from the Standard Input

Australian
National
University

Bchool of Computing | COMP1110/6710 2025 St 26/02/2025

Input/Output

/** Prints given value to standard output
* (usually: the console) */

void println(Object)
has a sibling:

/** Prints a prompt to the standard output and waits for
* input on standard input (usually: the console). Returns
* next line of input. */

String readln(String)

; QSA PRO : PRV12002 (AUSTRALIAN UNIVERSITY)
8 School of Computing | COMP1110/67102025 S1 26/02/2025 EE{ICC?SPPRRO\(/”IJDEERR%OPDRE\:I AAAAAAAAAAAAAAAAAAAAAAA

Abstraction

Value Abstraction
Type Abstraction
Function Abstraction

Australian
National
University

School of Computing | COMP1110/67102025 St 26/02/2025

DRY - Don’t Repeat Yourself (in code)

Copying code is bad!
- It duplicates bugs
- Changes might not be applied everywhere
- Larger code base = harder to understand

Abstraction is about finding and making use of commonalities.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Value Abstraction

String dogInfo(String name, int age) {
if(age < 3) { return name+” is a young dog”; }
else { if(age < 10) { return name + “is a dog”; }
else { return name+” is an old dog”; }

}

String catInfo(String name, int age) {
if(age < 4) { return name+” is a young cat”; }
else { if(age < 12) { return name + “is a cat”; }
else { return name+” is an old cat”; }

ine | COMPI110/67102025s1 ... 26/02/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
1l School of Computing | COMP1110/6710 2025 S1 26/02/2025 L O oo

Value Abstraction

String petInfo(String name, int age, int young,
int old, String type) {

if(age < young) { return name+” is a young “+type; }
else { if(age < old) { return name + “is a “+type; }

else { return name+” is an old +type; }

}

String catInfo(String name, int
return petInfo(name, age, 4,

}
String dogInfo(String name, int
return petInfo(name, age, 3,

}

12 School of Computing | COMP1110/6710 2025 St

age) {
12, “cat”);

age) {
10, “dog”);

26/02/2025

RRR
OOOOOOOOOOOOOOOOOOOOOOOO

Java Generics

Type Abstraction

A Brief User’s Guide

=/ Australian
==/ National

)

==~ University

$2hool of Computing | COMP1110/67102025 St 26/02/2025

Maybe

Maybe<T> is for cases where there may or may not be a result.
For example:

/** Tries to turn a String into an int if possible
* .L*/
Maybe<Integer> tryStringToInt(String str) {
if(isIntString(str)) {
return new Something<>(StringToInt(str));
} else {
return new Nothing<>();
}
}

14 School of Computing | COMP1110/6710 2025 S1 26/02/2025 ~ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

Maybe

Maybe<T> is for cases where there may or may not be a result.

This actually comes up a lot, and the patterns are always the same.
Except for the type of the result.

But for the pattern, that does not matter.

15 School of Computing | COMP1110/6710 2025 S1 26/02/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

Don’t Repeat Yourself (in code)

sealed interface MaybeInt permits NoInt, SomelInt {}
record NoInt() implements MaybeInt {}
record SomeInt(int i) implements MaybeInt {}

sealed interface MaybeString permits NoString, SomeString {}
record NoString() implements MaybeString {}
record SomeString(String s) implements MaybeString {}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
OOOOOOOOOOOOOOOOOOOOOOOO

Don’t Repeat Yourself (in code)

sealed interface Maybe<T> permits Nothing, Something {}
record Nothing<T>() implements Maybe<T> {}
record Something<T>(T elem) implements Maybe<T> {}

Much better! T can stand for (almost) anything!
=» This is just a general itemization, albeit with lots of specializations.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Almost anything

The primitive types (those whose name starts with a lowercase letter)
can’t be used with generics ®.

That's why it’s Maybe<Integer> and not Maybe<int>

int & Integer
long & Long
You can freely convert between the two.
float < Float Just don’t use == near the capitalized versions.
double < Double Use Equals instead.
boolean < Boolean
char & Character

...

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

How to use Maybe<T>

Step 1: replace the T with something concrete.
Maybe<String>, Maybe<Image>, Maybe<Maybe<String>>, ..

Step 2A: create new Maybe values

new Something<>(“Hello™) v, can leave out the type argument

new Nothing<>() when it is clear from context (according
new Nothing<String>() to Java). It doesn’t hurt to have it, though.

Step 2B: apply Maybe’s template to distinguish between values

ine | COMP1110/67102025S1 . 2B/02/2025 TEQSAPROVIDERID : PRVI2002 (AUSTRALIAN UNIVERSITY)
19 School of Computing | COMP1110/6710 2025 S1 26/02/2025 CRICOS PROVIDER CODE: 00120C

Pair<S,T>

/**
* Represents a pair of two values of given types.
* Examples:
* - Pair(5, "Hello")
* - Pair(16.0, 32.5)
* - Pair(Pair("", true), O)
*@param first The first value in the pair
* @param second The second value in the pair
*/
record Pair<S, T>(
S first,
T second) {}

20 School of Computing | COMP1110/6710 2025 S1 26/02/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Calling Generic Functions

This just says that this is a generic function with one type parameter T.
You have to pick exactly one T when you use it.
Java usually does this for you based on the arguments.

g

<T> T Default(Maybe<T> maybe, T else);

Essentially, if you give this a Maybe<String>, the second argument
also has to be a String, and the return type will also be String

] QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
21 School of Computing | COMP1110/6710 2025 S1 26/02/2025 EEICC?SPPRRO‘CFEFERR%OPDRE‘:/ AAAAAAAAAAAAAAAAAAAAAAA

Java Generics

Creating Generic Data Types and Functions

> DISTINCTION-LEVEL CONTENT <

82hool of Computing | COMP1110/67102025 St

Ausiralian
National
University

26/02/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

Generic Types

/*¥* . New!
* @param <T> the type of things that should be named

* . ¥

record NamedSomething<T>(T thing, String name) {}

sealed interface NTuple<T> permits Single, Tuple, Triple {}
record Single<T>(T t) implements NTuple<T> {}

record Tuple<T>(T tl, T t2) implements NTuple<T> {}

record Triple<T>(T t1, T t2, T t3) implements NTuple<T> {}

=
=

Generic Functions

<T, ...> [returnType] [functionName]([argTypel] [argNamel], ...) {

}
Can use Type Arguments in: x Constructors
\/ return type e.g.new T(...)

\/ argument types
casts, instanceof,
V local variable types x typecase, static member access
_ (not available right now anyway)
V type arguments in code

_

Lambdas
A

Function Abstraction in Java

School of Computing | COMP1110/67102025 S1

A,..‘
\

N
=

Australian
National
University

26/02/2025

Recall: Function References

runAsTest(this: :testSumExamplel) ;
These are references to functions you wrote

BigBang(“test”, 0, this::draw);

In turn, runAsTest and BigBang abstract over many possible functions.

Function Types

Java allows arbitrary ones, but in Functional Java, we have:
Supplier<T> - zero-argument functions that return values of type T

Function<S, T> -one-argument functions that take an argument of
type S and return something of type T

BiFunction<S, T, R> -two-argument functions that take arguments
of types S and T, respectively, and return an R

Predicate<T> - one-argument functions that take a T, return a boolean

BiPredicate<S, T> -two-argument functions that take arguments
of types S and T, respectively, and return a boolean
runAsTest accepts a Runnable, the type of void functions with no arguments.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Currying

Need more arguments?
Use Function<S, Function<T, R>>, etc.

See Standard Library for some helper functions around this.

..

i TEQSA PROVIDER ID: : PRVI2002 (AUSTRALIAN UNIVERSIT v)
28 School of Computing | COMP1110/67102025 S1 26/02/2025 i R 2ao2

Lambdas

Create an anonymous function
Can use values from context

Function<Integer, Integer> makeAdder(int amount) {
return x -> X + amount;

29 School of Computing | COMP1110/6710 2025 St

26/02/2025

..

Lambdas

Need context

var fun = x -> x; x Don’t know type of function.

Function<Integer, Integer> fun = x -> X;VContext tells us X is an Integer,
so result is an Integer

i TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERS
30 School of Computing | COMP1110/6710 2025 S1 26/02/2025 CREOS PROVIDER SoDE, o !

Using Function Values

Supplier
General form: Function
[funval].[call]([argl],..) BiFunction

Predicate
[call] depends on function type BiPredicate
Function<Integer, Integer> fun = ..;
fun.apply(5);

31 School of Computing | COMP1110/67102025 S1 26/02/2025

get
apply
apply
test
test

$ ¢ 8¢ 8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Debugging

Part 1:
Reading error messages

Part 2: P Australian
Using println to figure out where things go wrong S latona,

32 School of Computing | COMP1110/67102025 St 26/02/2025

Recap: Evaluation Order

This time for real!
[Live Demo]

I’'m going to use Intelli) here. Don’t use it on your own until Week 6!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Finding Bugs

Questions to ask:

- What should actually happen?

- Inorder for that to happen, what path should the program take?
- Does that match the path that is taken?

- Where on the path do things go wrong?

|s the reason there that
- We are taking the wrong path?
- We are getting a wrong value?

ine | COMPI110/67102025s1 ... 26/02/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
34 School of Computing | COMP1110/6710 2025 S1 26/02/2025 L O oo

Fork and clone the project.
Create a folder “ws2b”, and work in “World.java” in there.
Commit and push when you are done.

Design a World Program in stages.

Stage 1: the player controls a rectangle that starts in the middle of the world,
and can be moved up, down, left, and right with the arrow keys.

Stage 2: on a click, the square turns into a circle. On another click, the circle
turns back into a rectangle. The circle can move just like the rectangle.

Stage 3:if there is currently a rectangle, pressing the “w” key increases its
width, pressing “e” reduces the width, “h” increases the height, and “j”
decreases the height. When changing from a circle to a rectangle, the
rectangle’s width and height are reset to their original values.

Stage 4: if there is currently a circle, pressing “r” increases its radius, and
pressing “e” decreases the radius. When changing to a circle, the circle’s radius
is the smaller of the rectangle’s width and height.

ine | COMP1110/67102025S1 o 926/02/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
35 School of Computing | COMP1110/6710 2025 St 26/02/2025 L O oo

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

	1A
	Slide 1
	Slide 2
	Slide 3: Admin
	Slide 4: The Testing Interface
	Slide 5: Finishing up: World Program Start
	Slide 6: Practice
	Slide 7: Input/Output
	Slide 8: Input/Output
	Slide 9: Abstraction
	Slide 10: DRY - Don’t Repeat Yourself (in code)
	Slide 11: Value Abstraction
	Slide 12: Value Abstraction
	Slide 13: Java Generics
	Slide 14: Maybe
	Slide 15: Maybe
	Slide 16: Don’t Repeat Yourself (in code)
	Slide 17: Don’t Repeat Yourself (in code)
	Slide 18: Almost anything
	Slide 19: How to use Maybe<T>
	Slide 20: Pair<S,T>
	Slide 21: Calling Generic Functions

	Distinction
	Slide 22: Java Generics
	Slide 23: Generic Types
	Slide 24: Generic Functions

	Lambdas
	Slide 25: Lambdas lambda
	Slide 26: Recall: Function References
	Slide 27: Function Types
	Slide 28: Currying
	Slide 29: Lambdas
	Slide 30: Lambdas
	Slide 31: Using Function Values
	Slide 32: Debugging
	Slide 33: Recap: Evaluation Order
	Slide 34: Finding Bugs
	Slide 35: Practice

