
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

pollev.com/fabianm
Register for Engagement

Needs ANU Account!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

2 26/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Class representatives (COMP6710) – apply by today COB

- Reminder: Follow the Design Recipe!

- gitlab-CI file available for P1

- We’re working on increasing drop-in capacity

- P1 Submission
- We’re hoping to get CWAC available soon (check Ed for announcements)

- Otherwise, use Office form, and we’ll release some way of using assignment variables if necessary

- By default, latest pushed commit before deadline will be tested and used for code walks

Admin

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Two kinds of tests: yours and ours

You can imagine that our test assertions look like:

testEqual(new Nothing<Date>(),
 nextSalaryIncrease(
 makeStudent(“Jen”, GetDate(2005, 4, 4))));

4

The Testing Interface

26/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

[Live Demo]

Finishing up: World Program Start

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Design a World Program in stages.

Stage 1: the player controls a rectangle that starts in the middle of the world,
and can be moved up, down, left, and right with the arrow keys.

Stage 2: on a click, the square turns into a circle. On another click, the circle
turns back into a rectangle. The circle can move just like the rectangle.

Stage 3: if there is currently a rectangle, pressing the “w” key increases its
width, pressing “e” reduces the width, “h” increases the height, and “j”
decreases the height. When changing from a circle to a rectangle, the
rectangle’s width and height are reset to their original values.

Stage 4: if there is currently a circle, pressing “r” increases its radius, and
pressing “e” decreases the radius. When changing to a circle, the circle’s radius
is the smaller of the rectangle’s width and height.

6

Practice

26/02/2025School of Computing | COMP1110/6710 2025 S1

Fork and clone the comp1110-2025s1-workshops project.
Create a folder “ws2b”, and work in “World.java” in there.

Commit and push when you are done.

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

Input/Output

Part 2 – Reading from the Standard Input

26/02/20257School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** Prints given value to standard output
 * (usually: the console) */

void println(Object)

has a sibling:
/** Prints a prompt to the standard output and waits for
 * input on standard input (usually: the console). Returns
 * next line of input. */

String readln(String)

8

Input/Output

26/02/2025School of Computing | COMP1110/6710 2025 S1

Abstraction

Value Abstraction

Type Abstraction

Function Abstraction

26/02/20259School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Copying code is bad!

- It duplicates bugs

- Changes might not be applied everywhere

- Larger code base ➔ harder to understand

Abstraction is about finding and making use of commonalities.

DRY - Don’t Repeat Yourself (in code)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

String dogInfo(String name, int age) {

 if(age < 3) { return name+” is a young dog”; }

 else { if(age < 10) { return name + “is a dog”; }

 else { return name+” is an old dog”; }

}

String catInfo(String name, int age) {

 if(age < 4) { return name+” is a young cat”; }

 else { if(age < 12) { return name + “is a cat”; }

 else { return name+” is an old cat”; }

}

11

Value Abstraction

26/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

String petInfo(String name, int age, int young,
 int old, String type) {

 if(age < young) { return name+” is a young “+type; }
 else { if(age < old) { return name + “is a ”+type; }
 else { return name+” is an old ”+type; }

}

String catInfo(String name, int age) {
 return petInfo(name, age, 4, 12, “cat”);
}

String dogInfo(String name, int age) {
 return petInfo(name, age, 3, 10, “dog”);
}
12

Value Abstraction

26/02/2025School of Computing | COMP1110/6710 2025 S1

Java Generics

Type Abstraction

A Brief User’s Guide

26/02/202513School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Maybe<T> is for cases where there may or may not be a result.

For example:
/** Tries to turn a String into an int if possible
 * … */
Maybe<Integer> tryStringToInt(String str) {
 if(isIntString(str)) {
 return new Something<>(StringToInt(str));
 } else {
 return new Nothing<>();
 }
}

14

Maybe

26/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Maybe<T> is for cases where there may or may not be a result.

This actually comes up a lot, and the patterns are always the same.

Except for the type of the result.

But for the pattern, that does not matter.

15

Maybe

26/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

sealed interface MaybeInt permits NoInt, SomeInt {}

record NoInt() implements MaybeInt {}

record SomeInt(int i) implements MaybeInt {}

sealed interface MaybeString permits NoString, SomeString {}

record NoString() implements MaybeString {}

record SomeString(String s) implements MaybeString {}

…

Don’t Repeat Yourself (in code)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

sealed interface Maybe<T> permits Nothing, Something {}

record Nothing<T>() implements Maybe<T> {}

record Something<T>(T elem) implements Maybe<T> {}

Much better! T can stand for (almost) anything!

➔ This is just a general itemization, albeit with lots of specializations.

Don’t Repeat Yourself (in code)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Almost anything

The primitive types (those whose name starts with a lowercase letter)
can’t be used with generics .

That’s why it’s Maybe<Integer> and not Maybe<int>
int  Integer

long  Long

float  Float

double  Double

boolean  Boolean

char  Character

You can freely convert between the two.
Just don’t use == near the capitalized versions.
Use Equals instead.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Step 1: replace the T with something concrete.
Maybe<String>, Maybe<Image>, Maybe<Maybe<String>>, …

Step 2A: create new Maybe values
new Something<>(“Hello”)

new Nothing<>()

new Nothing<String>()

Step 2B: apply Maybe’s template to distinguish between values

19

How to use Maybe<T>

26/02/2025School of Computing | COMP1110/6710 2025 S1

You can leave out the type argument
when it is clear from context (according
to Java). It doesn’t hurt to have it, though.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/**
 * Represents a pair of two values of given types.
 * Examples:
 * - Pair(5, "Hello")
 * - Pair(16.0, 32.5)
 * - Pair(Pair("", true), 0)
 * @param first The first value in the pair
 * @param second The second value in the pair
 */
record Pair<S, T>(
 S first,
 T second) {}

20

Pair<S,T>

26/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

<T> T Default(Maybe<T> maybe, T else);

21

Calling Generic Functions

26/02/2025School of Computing | COMP1110/6710 2025 S1

This just says that this is a generic function with one type parameter T.
You have to pick exactly one T when you use it.
Java usually does this for you based on the arguments.

Essentially, if you give this a Maybe<String>, the second argument
also has to be a String, and the return type will also be String

T
E

Q
S

A
 P

R
O

V
ID

E
R

 ID
:P

R
V

12
0

0
2

(A
U

S
T

R
A

LI
A

N
 U

N
IV

E
R

S
IT

Y
)

C
R

IC
O

S
 P

R
O

V
ID

E
R

 C
O

D
E

: 0
0

12
0

C

Java Generics

Creating Generic Data Types and Functions

> DISTINCTION-LEVEL CONTENT <

26/02/202522School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** …
 * @param <T> the type of things that should be named
 * … */

record NamedSomething<T>(T thing, String name) {}

sealed interface NTuple<T> permits Single, Tuple, Triple {}

record Single<T>(T t) implements NTuple<T> {}

record Tuple<T>(T t1, T t2) implements NTuple<T> {}

record Triple<T>(T t1, T t2, T t3) implements NTuple<T> {}

Generic Types

New!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

<T, …> [returnType] [functionName]([argType1] [argName1], …) {

 …

}

Generic Functions

return type

Can use Type Arguments in:

argument types

local variable types

type arguments in code

Constructors
e.g. new T(…)

casts, instanceof,
typecase, static member access
(not available right now anyway)

Lambdas
𝜆

Function Abstraction in Java

26/02/202525 School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

runAsTest(this::testSumExample1);

BigBang(“test”, 0, this::draw);

Recall: Function References

These are references to functions you wrote

In turn, runAsTest and BigBang abstract over many possible functions.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Function Types
Java allows arbitrary ones, but in Functional Java, we have:

Supplier<T> - zero-argument functions that return values of type T

Function<S, T> - one-argument functions that take an argument of
 type S and return something of type T

BiFunction<S, T, R> - two-argument functions that take arguments
 of types S and T, respectively, and return an R

Predicate<T> - one-argument functions that take a T, return a boolean

BiPredicate<S, T> - two-argument functions that take arguments
 of types S and T, respectively, and return a boolean
runAsTest accepts a Runnable, the type of void functions with no arguments.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Need more arguments?

Use Function<S, Function<T, R>> , etc.

See Standard Library for some helper functions around this.

28

Currying

26/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Create an anonymous function

Can use values from context

Function<Integer, Integer> makeAdder(int amount) {

 return x -> x + amount;

}

29

Lambdas

26/02/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Need context

var fun = x -> x;

Function<Integer, Integer> fun = x -> x;

30

Lambdas

26/02/2025School of Computing | COMP1110/6710 2025 S1

Don’t know type of function.

Context tells us x is an Integer,
so result is an Integer

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

General form:
[funVal].[call]([arg1],…)

[call] depends on function type

Function<Integer, Integer> fun = …;

fun.apply(5);

31

Using Function Values

26/02/2025School of Computing | COMP1110/6710 2025 S1

Supplier  get

Function  apply

BiFunction  apply

Predicate  test

BiPredicate  test

Debugging

Part 1:

Reading error messages

Part 2:
Using println to figure out where things go wrong

26/02/202532 School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

This time for real!

[Live Demo]

I’m going to use IntelliJ here. Don’t use it on your own until Week 6!

Recap: Evaluation Order

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Questions to ask:

- What should actually happen?

- In order for that to happen, what path should the program take?

- Does that match the path that is taken?

- Where on the path do things go wrong?

34

Finding Bugs

26/02/2025School of Computing | COMP1110/6710 2025 S1

Is the reason there that
- We are taking the wrong path?
- We are getting a wrong value?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Design a World Program in stages.

Stage 1: the player controls a rectangle that starts in the middle of the world,
and can be moved up, down, left, and right with the arrow keys.

Stage 2: on a click, the square turns into a circle. On another click, the circle
turns back into a rectangle. The circle can move just like the rectangle.

Stage 3: if there is currently a rectangle, pressing the “w” key increases its
width, pressing “e” reduces the width, “h” increases the height, and “j”
decreases the height. When changing from a circle to a rectangle, the
rectangle’s width and height are reset to their original values.

Stage 4: if there is currently a circle, pressing “r” increases its radius, and
pressing “e” decreases the radius. When changing to a circle, the circle’s radius
is the smaller of the rectangle’s width and height.

35

Practice

26/02/2025School of Computing | COMP1110/6710 2025 S1

Fork and clone the comp1110-2025s1-workshops project.
Create a folder “ws2b”, and work in “World.java” in there.

Commit and push when you are done.

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

	1A
	Slide 1
	Slide 2
	Slide 3: Admin
	Slide 4: The Testing Interface
	Slide 5: Finishing up: World Program Start
	Slide 6: Practice
	Slide 7: Input/Output
	Slide 8: Input/Output
	Slide 9: Abstraction
	Slide 10: DRY - Don’t Repeat Yourself (in code)
	Slide 11: Value Abstraction
	Slide 12: Value Abstraction
	Slide 13: Java Generics
	Slide 14: Maybe
	Slide 15: Maybe
	Slide 16: Don’t Repeat Yourself (in code)
	Slide 17: Don’t Repeat Yourself (in code)
	Slide 18: Almost anything
	Slide 19: How to use Maybe<T>
	Slide 20: Pair<S,T>
	Slide 21: Calling Generic Functions

	Distinction
	Slide 22: Java Generics
	Slide 23: Generic Types
	Slide 24: Generic Functions

	Lambdas
	Slide 25: Lambdas lambda
	Slide 26: Recall: Function References
	Slide 27: Function Types
	Slide 28: Currying
	Slide 29: Lambdas
	Slide 30: Lambdas
	Slide 31: Using Function Values
	Slide 32: Debugging
	Slide 33: Recap: Evaluation Order
	Slide 34: Finding Bugs
	Slide 35: Practice

