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Sign up as a mentor or a
mentee below!




Admin

- Classrepresentatives (COMP6710) - apply by today COB

-  Reminder: Follow the Design Recipe!
- gitlab-ClI file available for P1

- We're working on increasing drop-in capacity
- P1Submission

We're hoping to get CWAC available soon (check Ed for announcements)
Otherwise, use Office form, and we’'ll release some way of using assignment variables if necessary

By default, latest pushed commit before deadline will be tested and used for code walks

OOOOOOOOOOOOOOOOOOOOOOOO



The Testing Interface

Two kinds of tests: yours and ours
You can imagine that our test assertions look like:

testEqual(new Nothing<Date>(),
nextSalaryIncrease(
makeStudent(“Jen”, GetDate(2005, 4, 4))));
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Finishing up: World Program Start

[Live Demo]

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Fork and clone the comp1110-2025s1-workshops project.

Pra ctice Create a folder “ws2b”, and work in “World.java” in there.
Commit and push when you are done.

Design a World Program in stages.
Stage 1: the player controls a rectangle that starts in the middle of the world,
and can be moved up, down, left, and right with the arrow keys.

Stage 2: on a click, the square turns into a circle. On another click, the circle
turns back into a rectangle. The circle can move just like the rectangle.
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Input/Output

Part 2 - Reading from the Standard Input
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Input/Output

/** Prints given value to standard output
* (usually: the console) */

void println(Object)
has a sibling:

/** Prints a prompt to the standard output and waits for
* input on standard input (usually: the console). Returns
* next line of input. */

String readln(String)
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Abstraction

Value Abstraction
Type Abstraction
Function Abstraction
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DRY - Don’t Repeat Yourself (in code)

Copying code is bad!
- It duplicates bugs
- Changes might not be applied everywhere
- Larger code base = harder to understand

Abstraction is about finding and making use of commonalities.
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Value Abstraction

String dogInfo(String name, int age) {
if(age < 3) { return name+” is a young dog”; }
else { if(age < 10) { return name + “is a dog”; }
else { return name+” is an old dog”; }

}

String catInfo(String name, int age) {
if(age < 4) { return name+” is a young cat”; }
else { if(age < 12) { return name + “is a cat”; }
else { return name+” is an old cat”; }
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Value Abstraction

String petInfo(String name, int age, int young,
int old, String type) {

if(age < young) { return name+” is a young “+type; }
else { if(age < old) { return name + “is a “+type; }

else { return name+” is an old +type; }

}

String catInfo(String name, int
return petInfo(name, age, 4,

}
String dogInfo(String name, int
return petInfo(name, age, 3,

}
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Java Generics

Type Abstraction

A Brief User’s Guide
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Maybe

Maybe<T> is for cases where there may or may not be a result.
For example:

/** Tries to turn a String into an int if possible
* .L*/
Maybe<Integer> tryStringToInt(String str) {
if(isIntString(str)) {
return new Something<>(StringToInt(str));
} else {
return new Nothing<>();
}
}

14 School of Computing | COMP1110/6710 2025 S1 26/02/2025 ~ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO



Maybe

Maybe<T> is for cases where there may or may not be a result.

This actually comes up a lot, and the patterns are always the same.
Except for the type of the result.

But for the pattern, that does not matter.
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Don’t Repeat Yourself (in code)

sealed interface MaybeInt permits NoInt, SomelInt {}
record NoInt() implements MaybeInt {}
record SomeInt(int i) implements MaybeInt {}

sealed interface MaybeString permits NoString, SomeString {}
record NoString() implements MaybeString {}
record SomeString(String s) implements MaybeString {}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Don’t Repeat Yourself (in code)

sealed interface Maybe<T> permits Nothing, Something {}
record Nothing<T>() implements Maybe<T> {}
record Something<T>(T elem) implements Maybe<T> {}

Much better! T can stand for (almost) anything!
=» This is just a general itemization, albeit with lots of specializations.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Almost anything

The primitive types (those whose name starts with a lowercase letter)
can’t be used with generics ®.

That's why it’s Maybe<Integer> and not Maybe<int>

int & Integer
long & Long
You can freely convert between the two.
float < Float Just don’t use == near the capitalized versions.
double < Double Use Equals instead.
boolean < Boolean
char & Character

...
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How to use Maybe<T>

Step 1: replace the T with something concrete.
Maybe<String>, Maybe<Image>, Maybe<Maybe<String>>, ..

Step 2A: create new Maybe values

new Something<>(“Hello™) v, can leave out the type argument

new Nothing<>() when it is clear from context (according
new Nothing<String>() to Java). It doesn’t hurt to have it, though.

Step 2B: apply Maybe’s template to distinguish between values
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Pair<S,T>

/**
* Represents a pair of two values of given types.
* Examples:
* - Pair(5, "Hello")
* - Pair(16.0, 32.5)
* - Pair(Pair("", true), O)
*@param first The first value in the pair
* @param second The second value in the pair
*/
record Pair<S, T>(
S first,
T second) {}
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Calling Generic Functions

This just says that this is a generic function with one type parameter T.
You have to pick exactly one T when you use it.
Java usually does this for you based on the arguments.

g

<T> T Default(Maybe<T> maybe, T else);

Essentially, if you give this a Maybe<String>, the second argument
also has to be a String, and the return type will also be String

] QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
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Java Generics

Creating Generic Data Types and Functions

> DISTINCTION-LEVEL CONTENT <
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Generic Types

/*¥* . New!
* @param <T> the type of things that should be named

* . ¥

record NamedSomething<T>(T thing, String name) {}

sealed interface NTuple<T> permits Single, Tuple, Triple {}
record Single<T>(T t) implements NTuple<T> {}

record Tuple<T>(T tl, T t2) implements NTuple<T> {}

record Triple<T>(T t1, T t2, T t3) implements NTuple<T> {}

=
=



Generic Functions

<T, ...> [returnType] [functionName]([argTypel] [argNamel], ...) {

}
Can use Type Arguments in: x Constructors
\/ return type e.g.new T(...)

\/ argument types
casts, instanceof,
V local variable types x typecase, static member access
_ (not available right now anyway)
V type arguments in code

_



Lambdas
A

Function Abstraction in Java
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Recall: Function References

runAsTest(this: :testSumExamplel) ;
These are references to functions you wrote

BigBang(“test”, 0, this::draw);

In turn, runAsTest and BigBang abstract over many possible functions.




Function Types

Java allows arbitrary ones, but in Functional Java, we have:
Supplier<T> - zero-argument functions that return values of type T

Function<S, T> -one-argument functions that take an argument of
type S and return something of type T

BiFunction<S, T, R> -two-argument functions that take arguments
of types S and T, respectively, and return an R

Predicate<T> - one-argument functions that take a T, return a boolean

BiPredicate<S, T> -two-argument functions that take arguments
of types S and T, respectively, and return a boolean
runAsTest accepts a Runnable, the type of void functions with no arguments.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C



Currying

Need more arguments?
Use Function<S, Function<T, R>>, etc.

See Standard Library for some helper functions around this.

..

i TEQSA PROVIDER ID: : PRVI2002 (AUSTRALIAN UNIVERSIT v)
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Lambdas

Create an anonymous function
Can use values from context

Function<Integer, Integer> makeAdder(int amount) {
return x -> X + amount;
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Lambdas

Need context

var fun = x -> x; x Don’t know type of function.

Function<Integer, Integer> fun = x -> X;VContext tells us X is an Integer,
so result is an Integer

i TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERS
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Using Function Values

Supplier
General form: Function
[funval].[call]([argl],..) BiFunction

Predicate
[call] depends on function type BiPredicate
Function<Integer, Integer> fun = ..;
fun.apply(5);
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get
apply
apply
test
test

$ ¢ 8¢ 8
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Debugging

Part 1:
Reading error messages

Part 2: P Australian
Using println to figure out where things go wrong S latona,
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Recap: Evaluation Order

This time for real!
[Live Demo]

I’'m going to use Intelli) here. Don’t use it on your own until Week 6!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Finding Bugs

Questions to ask:

- What should actually happen?

- Inorder for that to happen, what path should the program take?
- Does that match the path that is taken?

- Where on the path do things go wrong?

|s the reason there that
- We are taking the wrong path?
- We are getting a wrong value?
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Fork and clone the project.
Create a folder “ws2b”, and work in “World.java” in there.
Commit and push when you are done.

Design a World Program in stages.

Stage 1: the player controls a rectangle that starts in the middle of the world,
and can be moved up, down, left, and right with the arrow keys.

Stage 2: on a click, the square turns into a circle. On another click, the circle
turns back into a rectangle. The circle can move just like the rectangle.

Stage 3:if there is currently a rectangle, pressing the “w” key increases its
width, pressing “e” reduces the width, “h” increases the height, and “j”
decreases the height. When changing from a circle to a rectangle, the
rectangle’s width and height are reset to their original values.

Stage 4: if there is currently a circle, pressing “r” increases its radius, and
pressing “e” decreases the radius. When changing to a circle, the circle’s radius
is the smaller of the rectangle’s width and height.
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