
COMP1110/6710

Structured Programming

Image Courtesy NASA/JPL-Caltech.

pollev.com/albertofmartin963
Register for Engagement

Needs ANU Account!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Admin
- U1 due this Friday, 3PM (COMP1110)

- P1 code walks this week (Thu, Fri) in Hancock Library (COMP6710). You should have
received an e-mail notification with the 1-hour slot allocated to you

- P2 out now (COMP6710)

- You MUST select P1 commit ID you want us to mark/code walk and (optionally) your
choice for assignment variables by Tue, 23:55PM

- New Standard Library Version: 2025S1-6 (Download it now!)

- (Note: 2025S1-6 includes the full set of list features required to complete: (1) P2; (2)
this and tomorrow’s workshops. While not strictly required for U1, you may also use
these features if desired)

- Drop-in schedule for weeks 3-6 updated (in particular, we added many more!)

- We already have class representatives (contact details available in Wattle)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Recap: The Design Recipe

Step 1. Problem Analysis and Data Design

Step 2. Function Signature and Purpose Statement

Step 3. Examples

Step 4. Design Strategy

Step 5. Implementation

Step 6. Tests

A systematic approach to computer program design

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

4

Fixed-Sized vs Arbitrarily Large Data

3/03/2025School of Computing | COMP1110/6710 2025 S1

- Every data definition we covered so far describes data of fixed size

- This includes (recap): (1) basic data types (e.g., int, float, or String);
(2) enumerations; (3) records; and (4) general itemizations.

- Although these data definitions can be combined to create deeply nested data
structures, we always know the exact number of data pieces in (that is, the size of)
any specific instance of such data definitions

- In many programming problems, though, we need to process an undetermined
(but finite) number of pieces of information (e.g., keep track of an arbitrary
number of objects in a world program; today's demo)

- Frow now own, we incorporate to our repertoire data definitions that will allow us
to describe and process arbitrarily large pieces of information

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

5

Flagship example: Lists

3/03/2025School of Computing | COMP1110/6710 2025 S1

- In this workshop, we introduce lists as a flagship example for arbitrarily large
data definitions

- Arranging information in the form of lists is an ubiquitous part of our life (e.g.,
TO-DO lists, files to be submitted for an assignment, invitees to an
event, items to purchase in the supermarket, etc.)

- Given that information frequently comes in the form of lists, we must learn
how to represent such lists in computer programs

- Lists are very appealing to introduce two key concepts in which we are going
to insist over again and again and that are here to stay:

Self-referential data definitions Recursion (Recursive thinking)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

- We will work with lists of elements of a given data type (such as, e.g.,
Integer, String, a user-defined record, etc.)

- We assume all the list elements to be of the same type. However, with Java
generics (type abstraction), a single data definition is sufficient to have lists of
different types (e.g., a list of Strings, a list of Images, etc.)

- Conceptually, we conceive a list of elements as one of either:

1. An empty list (i.e., no elements); or

2. An element + a list of elements

6

Lists, self-references, and recursive thinking

3/03/2025School of Computing | COMP1110/6710 2025 S1

Self-reference

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Example: a list of Integers (pictorial representation)

7

Lists, self-references, and recursive thinking

3/03/2025School of Computing | COMP1110/6710 2025 S1

78 -2 13 42 6 9

Empty list (no elements)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

- The functional Java library offers an implementation of lists

- We will use such implementation in our functional Java programs

- You should not (and MUST NOT) write the Java code with the data definition of
lists in your program

- (Note: this also applies to ANY other data definition readily available in the
library; we saw people trying to do so in their code!)

- Any idea of how lists might be defined in the library? (Hint: the data definition
for lists uses tools that we have already covered so far)

8

Lists in functional Java (I)

3/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Lists in functional Java (II)

/** A ConsList<T> represents a list of elements of type T and is one of:

* - Nil<T> representing the empty list; or

* - Cons<T> representing an elem of type T + list of elems of type T */

sealed interface ConsList<T> permits Nil, Cons {}

/** A Nil <T> represents the empty list */

record Nil<T>() implements ConsList<T> {}

/** A Const<T> represents a list with one element plus another list
@param element: the first element the list

@param rest: the rest of the list*/

record Cons<T>(T element, ConsList<T> rest) implements ConsList<T> {}

9 3/03/2025School of Computing | COMP1110/6710 2025 S1

Self-referential data
definition

Do you recognize the type of data definition?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Remember COMP1100?

10 3/03/2025School of Computing | COMP1110/6710 2025 S1

- Haskell has built-in support for lists

- Indeed, one can also use Nil and Cons in a similar way to functional Java

- However, in COMP1100, you might have preferably used [] to denote the
empty list (instead of Nil) and x : y (instead of Cons(x, y))

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

- Design a function newList that given: (1) an Integer, and (2) a list of
Integers, returns a new list of Integers containing (1) and (2)

- Using this function, write a program that creates a list with the elements 8, -2,
7, 13, 42, 6, and 9 (see picture of this list in a previous slide)

- After creating the list, print the list on screen using a call to println

- Note: the standard library MakeList function offers a much more amenable
alternative to create lists (we will explore it after working with newList)

11

Creating lists (example)

3/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

12

Programming with lists (code template)

3/03/2025School of Computing | COMP1110/6710 2025 S1

// { ...

// return ... switch(listOfIntegers) {

// case Nil<Integer>() -> ... ;

// case Cons<Integer>(var element, var rest)->

// ... element ... [recursiveCall](... rest ...) ... ;

// } ...;

// }

Mostly the same code template for general itemizations with slight new addition that the function
might be called recursively in the Cons case (several examples of this covered later)

Key Motto:

The shape of the data

determines the shape of the

code!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

13

Programming with lists (easy example)

3/03/2025School of Computing | COMP1110/6710 2025 S1

- Design a function, called first, that given a list of Integers, returns the first element
of the list, if there is one. The function should deal with the empty list without
generating an error on screen.

- Example. Given: Cons(42, Cons(6, Nil())). Expect:
Something<Integer>(42)

- Question: Has Nil() any element? How can we deal with this case?

- Hint: you should use a data definition provided by the standard library that we covered
in the previous workshop

- Note: the standard library First function is similar to this function, except for the fact
that the it generates an error if called with an empty list

- Note: above, we used the println-like representation of lists. However, for
convenience, you may also use [42, 6] instead in your documentation (indeed the
standard library documentation follows this convention)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

14

Programming with lists (harder example)

3/03/2025School of Computing | COMP1110/6710 2025 S1

- Design a function, called len, that given a list of Integers, returns how many
elements there are in the list

- Example: Given: Cons(42, Cons(6, Nil())); Expect: 2

- Question: Which value should len(Nil())return?

- Spoiler: in contrast to the previous example, solution to this one requires the
use of recursion (the main key concept we are introducing in this workshop)

- Note: the standard library contains the Length function, which provides the
same functionality as len, except for the fact that, via generics, it can be
applied to lists of any type (not only Integers)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

15 3/03/2025School of Computing | COMP1110/6710 2025 S1

return switch(list) {
case Nil() -> 0;
case Cons(_,var rest) -> 1 + len(rest);

};

len(Cons(42, Cons(6, Cons(9, Nil()))))

Recursive call2

return switch(list) {
case Nil() -> 0;
case Cons(_,var rest) -> 1 + len(rest);

};

len(Cons(6, Cons(9, Nil())))

Recursive call1

return switch(list) {
case Nil() -> 0;
case Cons(_,var rest) -> 1 + len(rest);

};

len(Cons(9, Nil()))

Recursive call0

return switch(list) {
case Nil() -> 0;
case Cons(_,var rest) -> 1 + len(rest);

};

len(Nil())

Each box represents a different
call to the len(…) function with an
smaller list as we move downwards

3

Illustration of all steps involved in a call
to the len(…) function with the input list:

42 6 9

root function
call output

Base case: recursion stops!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

16

Programming with lists (exercise)

3/03/2025School of Computing | COMP1110/6710 2025 S1

- Design a function, called sum, that given a list of Integers, returns the
sum of the elements in the list

- Example. Given: Cons(42, Cons(6, Nil())). Expect: 48
- Question: Which value should sum(Nil())return?
- Hint: Copy and paste the definition of the len function and modify it to

implement the sum function
- Note: sum can be very easily implemented using the so-called Fold

higher-order function in the standard library (tomorrow’s workshop)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

17

What is recursion?

3/03/2025School of Computing | COMP1110/6710 2025 S1

- It is a fundamental technique for solving problems in computer science
- It finds the solution of a problem by first splitting it into smaller versions of the

same problem and then combining the solutions to these smaller subproblems
- A recursive function provides a solution for a base case, and for a case other than

the base case, the function calls to itself to solve a divided and smaller case
- Expectation is that any recursive call will ultimately return to the initial place it

was called to produce the correct result
- In general, a recursive function can call to itself multiple times (as, e.g., in trees

and graphs; studied later in the course). Besides, recursion can be used to solve
problems beyond programming with lists (e.g., computing the factorial of a
number, Fibonacci series, etc.; more examples later in the course)

“A function that calls to itself”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

18

How recursion is implemented in practice?
(“The call stack”)

3/03/2025School of Computing | COMP1110/6710 2025 S1

- Recursion relies on a data structure called call stack to handle function calls
- In a stack, elements are inserted and deleted only at one end (top of the stack)
- An stack follows the LIFO (Last In First Out) policy for insertion/removal (i.e., the

last element introduced is the first one to be removed)
- On each function call, an activation record is pushed to the stack, and on return

of the function call, the top of the stack is popped from the stack
- An activation record mainly consists of the function call parameters, space

required to store the local variables of the function being called, and the return
address so that the control flow can continue right after the function call

- The compiler and the operating system handle the call stack under the hood,
you do NOT have to handle it explicitly in your programs

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

19

Call stack dynamics example

3/03/2025School of Computing | COMP1110/6710 2025 S1

len(Nil()))

len(Cons(9,
Nil())))

len(Cons(6,
Cons(9,

Nil())))

len(Cons(42,
Cons(6,

Cons(9,
Nil()))))

void main(...)

call to len(…)

return

len(Nil()))

len(Cons(9,
Nil())))

len(Cons(6,
Cons(9,

Nil())))

len(Cons(42,
Cons(6,

Cons(9,
Nil()))))

void main(…)

call to len(…)

return

len(Nil()))

len(Cons(9,
Nil())))

len(Cons(6,
Cons(9,

Nil())))

len(Cons(42,
Cons(6,

Cons(9,
Nil()))))

void main(…)

call to len(…)

return

len(Nil()))

len(Cons(9,
Nil())))

len(Cons(6,
Cons(9,

Nil())))

len(Cons(42,
Cons(6,

Cons(9,
Nil()))))

void main(…)

State of stack right after main(…) calls len(…)

TOP

TOP

TOP

TOP

The call stack stores activation records.
Such records include return address to the caller

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

20

Common issue with wrong use of recursion

3/03/2025School of Computing | COMP1110/6710 2025 S1

/**
* … your application of the design recipe goes here …
*/
int len(ConsList<Integer> list){

return switch(list) {
case Nil<Integer>() -> 0;
case Cons<Integer>(var first, var rest) -> 1 + len(list);

};
}

Do you foresee any problem with the following function?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

/**
* … your application of the design recipe goes here …
*/
int len(ConsList<Integer> list){

return switch(list) {
case Nil<Integer>() -> 0;
case Cons<Integer>(var first, var rest) -> 1 + len(list);

};
}

21

Common issue with wrong use of recursion

3/03/2025School of Computing | COMP1110/6710 2025 S1

Java runtime flags the issue with the following runtime error message
“Exception in thread "main" java.lang.StackOverflowError”

Infinite recursion!!!
(base case never reached)

“Stack Overflow” means that the call stack runs out of memory

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

22

(Some recursive thinking) Exercises

3/03/2025School of Computing | COMP1110/6710 2025 S1

1. Design a function, called copyStringList, that given a list of Strings,
returns a new list with the same elements as the input list

2. Design a function exists, that given (1) a list of Strings, and (2) a String,
returns true if the element is in the list, and false otherwise

3. Design a function, called last, that given a list of Strings, returns the last
element of the list

4. Design a function, called append, that given: (1) a list of Strings, and (2) an
String, returns a new list resulting from appending (2) at the end of (1)

5. Design a function, called get, that given: (1) a list of Strings, and (2) the
index position of an element in the list, returns the element located in such
position. The position of the first element is 0, and that of the last element,
len(list)-1. Assume that the user always provides a valid index position.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Following the design recipe, design a world program that runs on a 800x800 pixels
WHITE background square and behaves as follows. Each time the user left clicks
with the mouse on the screen, the program draws a new balloon (e.g., a circle of
say, radius 20, or otherwise an image of your preference) with center located at
the position of the click and randomly chosen colour among the following 5
possibilities: RED, GREEN, BLUE, MAGENTA, or BLACK. The balloons must fall
down at a constant speed of 5 pixels/step and disappear from the window once
the reach the bottom of the background image.

Note: In a first version of the program it is ok if memory consumption grows
arbitrarily as we left click with the mouse. However, in a second stage, you may
also want to develop an improved version which reduces memory consumption
by removing those balloons which disappear from the screen.

23

Practice

3/03/2025School of Computing | COMP1110/6710 2025 S1

Fork and clone the comp1110-2025s1-workshops project.
Create a folder “ws3a”, and work in “FallingBalloons.java” in there.

Commit and push when you are done.

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

