)

Structured Programming

OMP1110,

=)
e |
By
LO

| Bt
J:ﬁ...

U1 due this Friday, 3PM (COMP1110)

P1 code walks this week (Thu, Fri) in Hancock Library (COMP6710). You should have
received an e-mail notification with the 1-hour slot allocated to you

P2 out now (COMP6710)

You MUST select P1 commit ID you want us to mark/code walk and (optionally) your
choice for assignment variables by Tue, 23:55PM

New Standard Library Version: 202551-6 (Download it now!)

(Note: 2025S51-6 includes the full set of list features required to complete: (1) P2; (2)
this and tomorrow’s workshops. While not strictly required for U1, you may also use
these features if desired)

Drop-in schedule for weeks 3-6 updated (in particular, we added many more!)

We already have class representatives (contact details available in Wattle)

RRRRRRRRRRRRRRRR

Recap: The Design Recipe

Step 1. Problem Analysis and Data Design

Step 2. Function Signature and Purpose Statement
Step 3. Examples

Step 4. Design Strategy

Step 5. Implementation

Step 6. Tests

Fixed-Sized vs Arbitrarily Large Data

- Every data definition we covered so far describes data of fixed size

- Thisincludes (recap): (1) basic data types (e.g., int, float, or String);
(2) enumerations; (3) records; and (4) general itemizations.

- Although these data definitions can be combined to create deeply nested data
structures, we always know the exact number of data pieces in (that is, the size of)
any specific instance of such data definitions

- In many programming problems, though, we need to process an undetermined
(but finite) number of pieces of information (e.g., keep track of an arbitrary
number of objects in a world program; today's demo)

- Frow now own, we incorporate to our repertoire data definitions that will allow us
to describe and process arbitrarily large pieces of information

4 School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
nnnnnnnnnnnnnnnnnn

Flagship example: Lists

- In this workshop, we introduce lists as a flagship example for arbitrarily large
data definitions

- Arranging information in the form of lists is an ubiquitous part of our life (e.g.,
TO-DO lists, files to be submitted for an assignment, invitees to an
event, items to purchase in the supermarket, etc.)

- Given that information frequently comes in the form of lists, we must learn
how to represent such lists in computer programs

- Lists are very appealing to introduce two key concepts in which we are going
to insist over again and again and that are here to stay:

i TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
5 School of Computing | COMP1110/6710 2025 S1 3/03/2025 PHOVIDER CODE, 00108

Lists, self-references, and recursive thinking

- We will work with lists of elements of a given data type (such as, e.g.,
Integer, String, a user-defined record, etc.)

- We assume all the list elements to be of the same type. However, with Java
generics (type abstraction), a single data definition is sufficient to have lists of
different types (e.g., a list of Strings, a list of Images, etc.)

- Conceptually, we conceive @list of elements as one of either:

1. Anempty list (i.e., no elements); or

2. An element + gllistof elements|

Self-reference

6 School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Lists, self-references, and recursive thinking

Example: a list of Integers (pictorial representation)

13

42

7 School of Computing | COMP1110/6710 2025 S1

3/03/2025

Lists in functional Java ()

- The functional Java library offers an implementation of lists

- We will use such implementation in our functional Java programs

- You should not (and MUST NOT) write the Java code with the data definition of
lists in your program

- (Note: this also applies to ANY other data definition readily available in the
library; we saw people trying to do so in their code!)

- Any idea of how lists might be defined in the library? (Hint: the data definition
for lists uses tools that we have already covered so far)

8 School of Computing | COMP1110/6710 2025 S1 3/03/2025 ~ TEGSAPROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

RRRRRRRRRRRRRRRR

Lists in functional Java (ll)

Do you recognize the type of data definition?

/** A ConsList<T> represents a list of elements of type T and is one of:
* - Nil<T> representing the empty list; or

* - Cons<T> representing an elem of type T + list of elems of type T */
sealed interface ConsList<T> permits Nil, Cons {}

/** A Nil <T> represents the empty list */
record Nil<T>() implements ConsList<T> {}

/** A Const<T> represents a list with one element plus another list
@param element: the first element the list Self-referential data

@param rest: the rest of the list*/ ‘///// definition \\\\\
record Cons<T>(T element, _) implements _{}

. TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
School of Computing | COMP1110/6710 2025 S1 3/03/2025 T e oo P

Remember COMP1100°?

- Haskell has built-in support for lists
- Indeed, one can also use Nil and Cons in a similar way to functional Java

- However, in COMP1100, you might have preferably used [] to denote the
empty list (instead of Nil) and x : y (instead of Cons(x, y))

3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

RRRRRRRRRRRRRRRRRR

10 School of Computing | COMP1110/6710 2025 S1

Creating lists (example)

Design a function newList that given: (1) an Integer, and (2) a list of
Integers, returns a new list of Integers containing (1) and (2)

Using this function, write a program that creates a list with the elements 8, -2,
7, 13,42, 6, and 9 (see picture of this list in a previous slide)

After creating the list, print the list on screen using a call to println

Note: the standard library MakeList function offers a much more amenable
alternative to create lists (we will explore it after working with newList)

11

School of Computing | COMP1110/6710 2025 S1 3/03/2025 ~ TEGSAPROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
nnnnnnnnnnnnnnnnnn

Programming with lists (code template)

Mostly the same code template for general itemizations with slight new addition that the function

might be called recursively in the Cons case (several examples of this covered later)

//
//
//
//

//
//
//

{
return ... switch(listOfIntegers) {
case Nil<Integer>() -> ... ;
case Cons<Integer>(var element, var rest)->
. element ... [recursiveCall](... rest ...) ... ;
) b oo Key Motto:
The shape of the data

determines the shape of the
code!

12

School of Computing | COMP1110/6710 2025 S1

3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Programming with lists (easy example)

Design a function, called first, that given a list of Integers, returns the first element
of the list, if there is one. The function should deal with the empty list without
generating an error on screen.

Example. Given: Cons (42, Cons(6, Nil())). Expect:
Something<Integer>(42)

Question: Has Ni1() any element? How can we deal with this case?

Hint: you should use a data definition provided by the standard library that we covered
in the previous workshop

Note: the standard library First function is similar to this function, except for the fact
that the it generates an error if called with an empty list

Note: above, we used the println-like representation of lists. However, for
convenience, you may also use [42, 6] instead in your documentation (indeed the
standard library documentation follows this convention)

13

School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

RRRRRRRRRRRRRRRRRR

Programming with lists (harder example)

Design a function, called len, that given a list of Integers, returns how many
elements there are in the list

Example: Given: Cons (42, Cons(6, Nil())); Expect:2
Question: Which value should 1en(Nil())return?

Spoiler: in contrast to the previous example, solution to this one requires the
use of recursion (the main key concept we are introducing in this workshop)

Note: the standard library contains the Length function, which provides the
same functionality as 1en, except for the fact that, via generics, it can be
applied to lists of any type (not only Integers)

14

School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

RRRRRRRRRRRRRRRRRR

3 —

root function
call output

Illustration of all steps involved in a call
to the len(...) function with the input list:

return switch(list) {
case Nil() -> o;

Len(cons (42, ERECECOREOINON)) |

case Cons(_,Vaplpest) -> 1 + len(rest);
}; 4 |

2 | $ Recursive call

return switch(list) {
case Nil() -> ©o;

s

Len(Cons e, (OREINEION) |

case Cons(_,Varirest) -> 1 + len(rest);

1

| v Recursive call

len(Cons(9, -))

case Nil() ->

case Cons(_,

42

return switch(list) {

9;

) -> 1 + len(rest);

9 [] s

ol

* Recursive call

len(Nil())

Base case: recursion stops! ' };

return switch(list) {

case Nil() -> 0;
case Cons(_,var rest)

-> 1 + len(rest);

15 School of Computing | COMP1110/6710 2025 S1

3/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

\ Each box represents a different
call to the 1en(...) function with an

smaller list as we move downwards

(] —
)
S Z

Programming with lists (exercise)

- Design a function, called sum, that given a list of Integers, returns the
sum of the elements in the list

- Example. Given: Cons(42, Cons(6, Nil())). Expect: 48

- Question: Which value should sum(Nil())return?

- Hint: Copy and paste the definition of the 1en function and modify it to
implement the sum function

- Note: sum can be very easily implemented using the so-called Fold
higher-order function in the standard library (tomorrow’s workshop)

School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
uuuuuuuuuuuuuuuuuu

What is recursion?

17

“A function that calls to itself”

It is a fundamental technique for solving problems in computer science

It finds the solution of a problem by first splitting it into smaller versions of the
same problem and then combining the solutions to these smaller subproblems
A recursive function provides a solution for a base case, and for a case other than
the base case, the function calls to itself to solve a divided and smaller case
Expectation is that any recursive call will ultimately return to the initial place it
was called to produce the correct result

In general, a recursive function can call to itself multiple times (as, e.g., in trees
and graphs; studied later in the course). Besides, recursion can be used to solve
problems beyond programming with lists (e.g., computing the factorial of a
number, Fibonacci series, etc.; more examples later in the course)

School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

RRRRRRRRRRRRRRRR

How recursion is implemented in practice?
(“The call stack”)

Recursion relies on a data structure called call stack to handle function calls

In a stack, elements are inserted and deleted only at one end (top of the stack)
An stack follows the LIFO (Last In First Out) policy for insertion/removal (i.e., the
last element introduced is the first one to be removed)

On each function call, an activation record is pushed to the stack, and on return
of the function call, the top of the stack is popped from the stack

An activation record mainly consists of the function call parameters, space
required to store the local variables of the function being called, and the return
address so that the control flow can continue right after the function call

The compiler and the operating system handle the call stack under the hood,
you do NOT have to handle it explicitly in your programs

18

School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
nnnnnnnnnnnnnnnnnn

Call stack dynamics example

The call stack stores activation records.

Such records include return address to the caller \

len(Cons(42, TOP
Cons(6,
Cons(9,

Nil()))))

void main(...)

N\

call to len(...)
—

+—
return

len(Cons(6,

TOP
Cons (9,
Nil())))

len(Cons(42,
Cons(6,
Cons (9,
Nil()))))

void main(..)

calltolen(...)
—

—
return

State of stack right after main(..) calls len(..)

TOP

len(Cons(9,
Nil())))

len(Cons(6,
Cons (9,
Nil())))

len(Cons(42,
Cons(6,
Cons(9,
Nil()))))

void main(..)

call to len(...)
—

«—
return

[~

1en(Nil()))TOP

len(Cons(9,
Nil())))

len(Cons(6,
Cons (9,
Nil())))

len(Cons (42,
Cons(6,
Cons(9,
Nil()))))

void main(..)

19 School of Computing | COMP1110/6710 2025 S1

3/03/2025

RRRRRRRRRRRRRRRRRR

Common issue with wrong use of recursion

Do you foresee any problem with the following function?

/*%*
* .. your application of the design recipe goes here ..
*/
int len(ConsList<Integer> list){
return switch(list) {
case Nil<Integer>() -> 0;
case Cons<Integer>(var first, var rest) -> 1 + len(list);

s

20 School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

Common issue with wrong use of recursion

Java runtime flags the issue with the following runtime error message
“Exception in thread "main" java.lang.StackOverflowError”

/**

* .. your application of the design recipe goes here ..
X

in/t len (CONETISERTNEEErSITaSE) | Infinite recursion!!!

return switch(list) { ‘\\\\\\“\\\ibéffifffiﬁfifrreached)
case Nil<Integer>() -> 0;

case Cons<Integer>(var first, var rest) -> 1 + len(JllEH);
}s

“Stack Overflow” means that the call stack runs out of memory

21 School of Computing | COMP1110/6710 2025 S1 3/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS
PROVIDER CODE: 00120C

(Some recursive thinking) Exercises

1.

Design a function, called copyStringlList, that given a list of Strings,
returns a new list with the same elements as the input list

Design a function exists, that given (1) a list of Strings, and (2) a String,
returns true if the element is in the list, and false otherwise

Design a function, called 1ast, that given a list of Strings, returns the last
element of the list

Design a function, called append, that given: (1) a list of Strings, and (2) an
String, returns a new list resulting from appending (2) at the end of (1)

Design a function, called get, that given: (1) a list of Strings, and (2) the
index position of an element in the list, returns the element located in such
position. The position of the first element is 0, and that of the last element,
len(list)-1. Assume that the user always provides a valid index position.

— ——

—
i

School of Computing | COMP1110/6710 2025 S1 3/03/2025

RRRRRRRRRRRRRRRR

Fork and clone the project.
Create a folder “ws3a”, and work in “FallingBalloons.java” in there.
Commit and push when you are done.

Following the design recipe, design a world program that runs on a 800x800 pixels
WHITE background square and behaves as follows. Each time the user left clicks
with the mouse on the screen, the program draws a new balloon (e.g., a circle of
say, radius 20, or otherwise an image of your preference) with center located at
the position of the click and randomly chosen colour among the following 5
possibilities: RED, GREEN, BLUE, MAGENTA, or BLACK. The balloons must fall
down at a constant speed of 5 pixels/step and disappear from the window once
the reach the bottom of the background image.

Note: In a first version of the program it is ok if memory consumption grows
arbitrarily as we left click with the mouse. However, in a second stage, you may
also want to develop an improved version which reduces memory consumption
by removing those balloons which disappear from the screen.

23 School of Computing | COMP1110/6710 2025 S1 3/03/2025 ~ TEGSAPROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

RRRRRRRRRRRRRRRR

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

