[w] E_H 4mm Needs ANU Account! ' Australian

, » National
w sy University
[=] c Structured Programming

pollev.com/fabianm

Register for Engagement CO M P1 1 1 O/ 671 O

4 | wol 1HR DY TRLA NG

-

Image Courtesy NASA/JPL-Caltech.

Recap: Assignments

Three steps you must do:

- Push Code on GitLab (can use assighment variables/extensions)
- Register for Code Walk (Base Deadline Day, 18:00, no extensions)
- Attend Code Walk at Scheduled Time

Two optional steps:

- Provide Particular Commit You Want to Submit (otherwise, latest
commit before base deadline)

- Provide Scheduling Preferences for Code Walk (otherwise, some
time during your registered tutorial time)

ine | COMPI110/671020251 ... /'11/03/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
2 School of Computing | COMP1110/6710 2025 S1 1/03/2025 L e o2

Recap: Academic Integrity in Assignments

You are expected to work on the assignments on your own.
- NOT with a friend

- NOT with ChatGPT & Co

- NOT with an outside tutor, cram school, or online tutoring service
Instead of paying someone, ask us for help!

Code written by different people is not as similar as you might think!
You must sign a Statement of Originality for every assignment.

ine | COMP1110/6710 2025 Q1 o 11/03/202 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
3 School of Computing | COMP1110/6710 2025 S1 11/03/2025 CRIGOS PROVIDER GODE: 001296

Code Walks

General Formula:

Tests (20 marks) - in P1, 16 automated, 4 manual

+ Code Walk (40 marks) - 8 Style, 17 Design, 15 Presentation
+ Test * Code Walk /20 (40 marks)

Form Deductions (up to 50 marks)
most common: 5 marks per disallowed Java feature

= ___/100 marks
* 1if signed SOO, O otherwise
= ___/100 marks

See Skeleton Rubric on Course Website

RRR
OOOOOOOOOOOOOOOOOOOOOOOO

Code Walks

Key reasons for low scores:

- Automated tests could not run
- Could not answer questions

- Did not give examples (in data type definitions and/or function definitions)
- Did not write down template where required
- Did not specify Design Strategy

- Did not follow any Design Strategy

- Highly Complex Code

- Code did not adhere to Functional Java Restrictions Not following the

- Too few tests (if any) Design Recipe

- No Statement of Originality/not properly signed

RRR
OOOOOOOOOOOOOOOOOOOOOOOO

Case Distinction vs. Template
Application

Yes, switch-expressions/statements may form a case distinction.

However, if you use it to distinguish cases of an enumeration or
itemization, it better be a template application.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Data Definitions

Explanation
Examples
Signature

Interpretations

with thanks to Indiana Wilson

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Function Definitions

Purpose Statement
Examples
Strategy
Signature

Tests

with thanks to Indiana Wilson

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Trees

As Imagined by Computer Scientists

=] Australian
~=-/ National
==~ University

Trees

“Root” “Node”
“Node"

“child nodes”

bé

“Node”
“Inner
- Nodes” v
descendants”

I “parent node”
“Leaf”

“ancestors”
“Node” <mm) “Node”

“Leaf”
“Siblings”

“Leaf”

“Node”

: PRV12002 (AUSTRALIAN U
R CODE: 00120C

A

)

Binary Trees

/>I<>I< .. >I</

sealed interface BinaryTree permits Leaf, Node {}

/** .. */

record Leaf() implements BinaryTree {}

/** .. */

record Node(BinaryTree left, BinaryTree right)
implements BinaryTree {}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

Recap: The ConsList<T> Template

//
//
//
//

//
//
//

{...

return ... switch(list) {

case Nil<T>() ->..

°c)

case Cons<T>(var element, var rest)->

. element ..

. [recursiveCall](...

rest ...

}
Key Motto:

The shape of the data determines the shape of the code!

School of Computing | COMP1110/6710 2025 S1

11/03/2025

A Vi 1D: 1. (Al
CRICOS PROVIDER CODE: 00120C

A Tree Template (for binary trees)

//
//
//
//

//

//
//
//

{ ...
return ... switch(tree) {
case Leaf() ->... ;
case Node(var left, var right)->
... [recursiveCall](... left)
... [recursiveCall](... right ...)
} - Key Motto:

The shape of the data determines the shape of the code!

School of Computing | COMP1110/6710 2025 S1

11/03/2025

A Vi 1D: 1. (Al
CRICOS PROVIDER CODE: 00120C

Trees

- (Inner) Nodes (recursive cases) and Leaves (base cases)

- Topmost node is called “root”

- There may be multiple types of nodes

- Certain nodes may contain data

- Number of children may be fixed per node type or variable

i TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
14 School of Computing | COMP1110/6710 2025 S1 1/03/2025 L e o2

Intertwined
Data

Also called “mutual recursion”

-] Australian
= National

\

==~ University

Variable Arity Trees

/** .. */

sealed interface MixedTree permits BiNode, Node {}

/** .. */

record BiNode(MixedTree left, MixedTree right)
implements MixedTree {}

[** o0 */ . . . Intertwined data:
record Node(ConsList<MixedTree> children) |jivedTree & Conslist

implements MixedTree {}

)ﬂ}) =

ine | COMP1110/6710 2025 Q1 o 11/03/202 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
16 School of Computing | COMP1110/6710 2025 S1 11/03/2025 CRIGOS PROVIDER GODE: 001296

Intertwined Data - Templates

/]l { .

// return switch(tree) {

// case BiNode(var left, var right) -> ..

// [recursiveCall](..left..)..[recursiveCall](..right..)...;
// case Node(var children)->..[consListFun](..children..)..
/1 }s

/1] }

17

School of Computing | COMP1110/6710 2025 S1

11/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

J

Intertwined Data - Templates

/]l { .

// return switch(list) {

// case Nil() -> ..;

// case Cons(var first, var rest) -> ..

// [treeFun](..first..) .. [recursiveCall](..rest..)..;
/1 }s

/1 }

CRICOS PROVIDER CODE: 00120C

Intertwined Data

Different Data Definitions that refer to each other

Need templates that refer to functions for each other
Need to write functions in corresponding pairs

11/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CCCCCCCCCCCCCCCCCC = 00120C

School of Computing | COMP1110/6710 2025 St

)ﬁ}))

Recur_sive
Functions

More Generally

=/ Australian
= National

\

==~ University

80hool of Computing | COMP1110/67102025 St 11/03/2025

Structural Recursion

Key idea:
Values contained within other values are smaller than the outer value.
Eventually, this must reach a base case.

Easy to see for general itemizations, but also true for integers going
towards O or strings going towards the empty string.

Example: factorial

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

)ﬁ}))

Maps

Storing and looking up values with keys

=] Australian
= National

)

==~ University

82hool of Computing | COMP1110/67102025 St 11/03/2025

ConsList-based Maps

New in the standard library: functions for ConsList-based Maps:
ConsList<Pair<K,V>>

K are keys

V are values

For each K, there is at most one V in the map.

Get(map, key) returns aMaybe<V> - something if thereis aV for key,
otherwise nothing.

Put(map, key, value) returns anew map with key mapped to value

RRR
OOOOOOOOOOOOOOOOOOOOOOOO

Fork and clone the project.
Create a folder “ws4a”, and work in “DescendantsTree.java”.
Commit and push when you are done.

Following the design recipe, design a program able to model a particular
person's descendants tree. A person's descendants include the children of that
person (immediate descendants), the children of the children of that person
(grandchildren) and so on. The program should keep track of the full name (i.e.,
names + surnames), gender, birth and death date (if and only if the person died)
of every person in the descendant's tree (including the root of the tree).

You can assume: (1) all dates are in the same time zone, and time of day does
not matter; (2) the birth date of the children of any parent in the tree has to be a
biologically compatible future date compared to the birth date of the parent; (3)
the difference among birth dates of any two siblings is biologically compatible;
(4) the death date can never be an earlier date than the birth date; (5) there
cannot be two descendants with the same full name.

ine | COMP1110/67102025S1 . 11/03/2025 @ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
24 School of Computing | COMP1110/6710 2025 St 1/03/2025 L e o2

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

Person's descendant tree example

-|Jason Grey I—

Fred Smith
Mary Grey

Jane Smith

Lucas Grey's descendant tree

Lucas has:

Joseph Wetter

-|Jessica Grey

[]
John Wetter I

Peter Grey

Source: Wikipedia

25

School of Computing | COMP1110/6710 2025 S1

Hannah Grey

3 children (Mary, Jason, Peter)
5 grandchildren (Fred, Jane, Sean,
Jessica, Hannah); and

3 great-grandchildren (Joseph,
John, Laura)

Laura Wetter

11/03/2025

TEQSA PROVID

IDER ID: PRV12002 (AUSTRALIAN UNIVER! SITY)
CRICOS PROVIDER CODE: 00120C

A

()

. Fork and clone the comp1110-2025s1-workshops project.
Pra Ct ICe Create a folder “ws4a”, and work in “DescendantsTree.java”.
Commit and push when you are done.

Design the following functions:

1. Given the full name of a person (possible different from the person in the root of the tree), count
how many descendants of that person are there in a person's descendant tree. Hint: develop first
a function that counts how many descendants are there in a person's descendant tree.

2. Given a person's descendant tree, generate a list with the full names of (1) all descendants which
are females; (2) descendants still alive; (3) descendants born after a given date; (4) descendants
that have had 2 or more children born the same date. Note 1: you can develop a single higher-
order function to code (1)-(4). Note 2: the order of elements in the output list is not important; the
output of the function is correct as far all the requested full names are in the output list.

3. Given a person's descendant tree, return the name of the person that had their first children
earliest in their life among all parents in the tree. If more than one person fulfills this criterion,
return one of such people arbitrarily.

4. Given a person's descendant tree, returns a new tree where all males and their descendants are
removed from the input tree. Generalize the function such that this operation (removal of some
people and all their descendants) can be applied to any predicate passed as an argument to the
function.

26 School of Computing | COMP1110/67102025 S1 11/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

	1A
	Slide 1
	Slide 2: Recap: Assignments
	Slide 3: Recap: Academic Integrity in Assignments
	Slide 4: Code Walks
	Slide 5: Code Walks
	Slide 6: Case Distinction vs. Template Application
	Slide 7: Data Definitions with thanks to Indiana Wilson
	Slide 8: Function Definitions with thanks to Indiana Wilson
	Slide 9: Trees
	Slide 10: Trees
	Slide 11: Binary Trees
	Slide 12: Recap: The ConsList<T> Template
	Slide 13: A Tree Template (for binary trees)
	Slide 14: Trees
	Slide 15: Intertwined Data
	Slide 16: Variable Arity Trees
	Slide 17: Intertwined Data - Templates
	Slide 18: Intertwined Data - Templates
	Slide 19: Intertwined Data
	Slide 20: Recursive Functions
	Slide 21: Structural Recursion
	Slide 22: Maps
	Slide 23: ConsList-based Maps
	Slide 24: Practice
	Slide 25: Person's descendant tree example
	Slide 26: Practice

