
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

pollev.com/fabianm
Register for Engagement

Needs ANU Account!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Three steps you must do:

- Push Code on GitLab (can use assignment variables/extensions)

- Register for Code Walk (Base Deadline Day, 18:00, no extensions)

- Attend Code Walk at Scheduled Time

Two optional steps:

- Provide Particular Commit You Want to Submit (otherwise, latest
commit before base deadline)

- Provide Scheduling Preferences for Code Walk (otherwise, some
time during your registered tutorial time)

2

Recap: Assignments

11/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

You are expected to work on the assignments on your own.

- NOT with a friend

- NOT with ChatGPT & Co

- NOT with an outside tutor, cram school, or online tutoring service
Instead of paying someone, ask us for help!

Code written by different people is not as similar as you might think!

You must sign a Statement of Originality for every assignment.

3

Recap: Academic Integrity in Assignments

11/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Code Walks
General Formula:

Tests (20 marks) – in P1, 16 automated, 4 manual

+ Code Walk (40 marks) – 8 Style, 17 Design, 15 Presentation

+ Test * Code Walk / 20 (40 marks)

- Form Deductions (up to 50 marks)
 most common: 5 marks per disallowed Java feature

= ___/100 marks

* 1 if signed SOO, 0 otherwise

= ___/100 marks

See Skeleton Rubric on Course Website

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Code Walks
Key reasons for low scores:

- Automated tests could not run

- Could not answer questions

- Did not give examples (in data type definitions and/or function definitions)

- Did not write down template where required

- Did not specify Design Strategy

- Did not follow any Design Strategy

- Highly Complex Code

- Code did not adhere to Functional Java Restrictions

- Too few tests (if any)

- No Statement of Originality/not properly signed

Not following the
Design Recipe

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Case Distinction vs. Template
Application

Yes, switch-expressions/statements may form a case distinction.

However, if you use it to distinguish cases of an enumeration or
itemization, it better be a template application.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Explanation

Examples

Signature

Interpretations

7

Data Definitions with thanks to Indiana Wilson

11/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Purpose Statement

Examples

Strategy

Signature

Tests
8

Function Definitions with thanks to Indiana Wilson

11/03/2025School of Computing | COMP1110/6710 2025 S1

Trees

As Imagined by Computer Scientists

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Trees

“Node”

“Leaf”

“Node”

“Leaf” “Leaf” “Leaf”

“Root” “Node”

“Node” “Node” “Node” “Node”

“inner
Nodes”

“Siblings”

“child nodes”
“descendants”

“parent node”
“ancestors”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** ... */

sealed interface BinaryTree permits Leaf, Node {}

/** ... */

record Leaf() implements BinaryTree {}

/** ... */

record Node(BinaryTree left, BinaryTree right)
 implements BinaryTree {}

11

Binary Trees

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

12

Recap: The ConsList<T> Template

11/03/2025School of Computing | COMP1110/6710 2025 S1

// { ...

// return ... switch(list) {

// case Nil<T>() ->... ;

// case Cons<T>(var element, var rest)->

// ... element ... [recursiveCall](... rest ...) ... ;

// } ...;

// }

Key Motto:

The shape of the data determines the shape of the code!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

13

A Tree Template (for binary trees)

11/03/2025School of Computing | COMP1110/6710 2025 S1

// { ...

// return ... switch(tree) {

// case Leaf() ->... ;

// case Node(var left, var right)->

// ... [recursiveCall](... left ...) ...

// ... [recursiveCall](... right ...) ... ;

// } ...;

// }
Key Motto:

The shape of the data determines the shape of the code!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- (Inner) Nodes (recursive cases) and Leaves (base cases)

- Topmost node is called “root”

- There may be multiple types of nodes

- Certain nodes may contain data

- Number of children may be fixed per node type or variable

14

Trees

11/03/2025School of Computing | COMP1110/6710 2025 S1

Intertwined
Data
Also called “mutual recursion”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

16

Variable Arity Trees

11/03/2025School of Computing | COMP1110/6710 2025 S1

/** ... */
sealed interface MixedTree permits BiNode, Node {}

/** ... */
record BiNode(MixedTree left, MixedTree right)
 implements MixedTree {}

/** ... */
record Node(ConsList<MixedTree> children)
 implements MixedTree {}

Intertwined data:
MixedTree & ConsList

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

17

Intertwined Data - Templates

11/03/2025School of Computing | COMP1110/6710 2025 S1

// { …

// return switch(tree) {

// case BiNode(var left, var right) -> …
// [recursiveCall](…left…)…[recursiveCall](…right…)…;

// case Node(var children)->…[consListFun](…children…)…;

// };

// }

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

18

Intertwined Data - Templates

11/03/2025School of Computing | COMP1110/6710 2025 S1

// { …

// return switch(list) {

// case Nil() -> …;

// case Cons(var first, var rest) -> …

// [treeFun](…first…) … [recursiveCall](…rest…)…;

// };

// }

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Different Data Definitions that refer to each other

- Need templates that refer to functions for each other

- Need to write functions in corresponding pairs

19

Intertwined Data

11/03/2025School of Computing | COMP1110/6710 2025 S1

Recursive
Functions
More Generally

11/03/202520School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Key idea:

Values contained within other values are smaller than the outer value.

Eventually, this must reach a base case.

Easy to see for general itemizations, but also true for integers going
towards 0 or strings going towards the empty string.

Example: factorial

Structural Recursion

Maps

Storing and looking up values with keys

22 11/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

New in the standard library: functions for ConsList-based Maps:
ConsList<Pair<K,V>>

K are keys

V are values

For each K, there is at most one V in the map.

Get(map, key) returns a Maybe<V> - something if there is a V for key,
otherwise nothing.

Put(map, key, value) returns a new map with key mapped to value

ConsList-based Maps

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Following the design recipe, design a program able to model a particular
person's descendants tree. A person's descendants include the children of that
person (immediate descendants), the children of the children of that person
(grandchildren) and so on. The program should keep track of the full name (i.e.,
names + surnames), gender, birth and death date (if and only if the person died)
of every person in the descendant's tree (including the root of the tree).

You can assume: (1) all dates are in the same time zone, and time of day does
not matter; (2) the birth date of the children of any parent in the tree has to be a
biologically compatible future date compared to the birth date of the parent; (3)
the difference among birth dates of any two siblings is biologically compatible;
(4) the death date can never be an earlier date than the birth date; (5) there
cannot be two descendants with the same full name.

24

Practice

11/03/2025School of Computing | COMP1110/6710 2025 S1

Fork and clone the comp1110-2025s1-workshops project.
Create a folder “ws4a”, and work in “DescendantsTree.java”.

Commit and push when you are done.

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

25

Person's descendant tree example

11/03/2025School of Computing | COMP1110/6710 2025 S1

Source: Wikipedia

Lucas Grey's descendant tree

Lucas has:
• 3 children (Mary, Jason, Peter)
• 5 grandchildren (Fred, Jane, Sean,

Jessica, Hannah); and
• 3 great-grandchildren (Joseph,

John, Laura)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Design the following functions:

1. Given the full name of a person (possible different from the person in the root of the tree), count
how many descendants of that person are there in a person's descendant tree. Hint: develop first
a function that counts how many descendants are there in a person's descendant tree.

2. Given a person's descendant tree, generate a list with the full names of (1) all descendants which
are females; (2) descendants still alive; (3) descendants born after a given date; (4) descendants
that have had 2 or more children born the same date. Note 1: you can develop a single higher-
order function to code (1)-(4). Note 2: the order of elements in the output list is not important; the
output of the function is correct as far all the requested full names are in the output list.

3. Given a person's descendant tree, return the name of the person that had their first children
earliest in their life among all parents in the tree. If more than one person fulfills this criterion,
return one of such people arbitrarily.

4. Given a person's descendant tree, returns a new tree where all males and their descendants are
removed from the input tree. Generalize the function such that this operation (removal of some
people and all their descendants) can be applied to any predicate passed as an argument to the
function.

26

Practice

11/03/2025School of Computing | COMP1110/6710 2025 S1

Fork and clone the comp1110-2025s1-workshops project.
Create a folder “ws4a”, and work in “DescendantsTree.java”.

Commit and push when you are done.

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

	1A
	Slide 1
	Slide 2: Recap: Assignments
	Slide 3: Recap: Academic Integrity in Assignments
	Slide 4: Code Walks
	Slide 5: Code Walks
	Slide 6: Case Distinction vs. Template Application
	Slide 7: Data Definitions with thanks to Indiana Wilson
	Slide 8: Function Definitions with thanks to Indiana Wilson
	Slide 9: Trees
	Slide 10: Trees
	Slide 11: Binary Trees
	Slide 12: Recap: The ConsList<T> Template
	Slide 13: A Tree Template (for binary trees)
	Slide 14: Trees
	Slide 15: Intertwined Data
	Slide 16: Variable Arity Trees
	Slide 17: Intertwined Data - Templates
	Slide 18: Intertwined Data - Templates
	Slide 19: Intertwined Data
	Slide 20: Recursive Functions
	Slide 21: Structural Recursion
	Slide 22: Maps
	Slide 23: ConsList-based Maps
	Slide 24: Practice
	Slide 25: Person's descendant tree example
	Slide 26: Practice

