
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

pollev.com/fabianm
Register for Engagement

Needs ANU Account!

(Mutable) State

The stuff that some of you have already been
using, even though they should not have

Still illegal in P2, and only partially allowed (i.e.
using HashMaps) in the last part of U2

2 12/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

A somewhat mathematical view of the world:
functions always return the same value given the same arguments.

var x = f(5);

var y = f(5);

testEqual(x, y); //should always succeed

Functional Programming
As in Functional Java, Haskell, and others

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

A somewhat mathematical view of the world:
functions always return the same value given the same arguments.

var x = RandomNumber(5);

var y = RandomNumber(5);

testEqual(x, y); //should always succeed?

Functional Programming
As in Functional Java, Haskell, and others

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Closer to what computers actually do, and useful for modelling things
that naturally change.

“We return a new World that is just like the old one, except that the
rocket’s Y-coordinate is 5 less than before.”

vs.

“We change the World’s rocket’s Y-coordinate to 5 less than before.”

Imperative Programming
As in Java, Python, and others

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Not always great: some things are not meant to be shared.

Date/DateTime in stdlib are based on Java’s Time class. If you add 20
years to your birthday, you get a new date, 20 years after your birthday.

This was not Java’s original way of modelling Dates/Times.

If you used Java’s old Calendar class, and added 20 years to your
birthday, you did not get a new value; your birthday is now 20 years
later.

Imperative Programming
As in Java, Python, and others

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Not always great: may disturb structural recursion.

[Demo]

Imperative Programming
As in Java, Python, and others

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Programming

• Expressions always have the
same result, no matter how
often you use them

• Data created with the same
arguments are equal

• All data flow is explicit,
through function arguments

• Sometimes cumbersome to
share/change state

8 12/03/2025

Imperative Programming

• Memory allows for additional
inputs/outputs

• Expressions/functions do not
just have results, they also
have effects

• Need to document effects
➔ see next week

• Equality is more complicated
(see == vs. Equals)

• How often and in what order
you evaluate things matters

School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Programming

ConsList-based Map (CLM)
CLM MakeConsMap(Pair<K, V>…)

CLM Put(CLM, K, V)

CLM Remove(CLM, K)

Maybe<V> Get(CLM, K)

boolean ContainsKey(CLM, K)

ConsList<K> GetKeys(CLM)

9 12/03/2025

Imperative Programming

HashMap (HM)
HM MakeHashMap(Pair<K, V>…)

void Put(HM, K, V)

void Remove(HM, K)

Maybe<V> Get(HM, K)

boolean ContainsKey(HM, K)

ConsList<K> GetKeys(HM)

School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

10

Back to Trees

12/03/2025School of Computing | COMP1110/6710 2025 S1

Randall Munroe, https://xkcd.com/518/

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Following the design recipe, design a program able to model a particular
person's descendants tree. A person's descendants include the children of that
person (immediate descendants), the children of the children of that person
(grandchildren) and so on. The program should keep track of the full name (i.e.,
names + surnames), gender, birth and death date (if and only if the person died)
of every person in the descendant's tree (including the root of the tree).

You can assume: (1) all dates are in the same time zone, and time of day does
not matter; (2) the birth date of the children of any parent in the tree has to be a
biologically compatible future date compared to the birth date of the parent; (3)
the difference among birth dates of any two siblings is biologically compatible;
(4) the death date can never be an earlier date than the birth date; (5) there
cannot be two descendants with the same full name.

11

Practice

12/03/2025School of Computing | COMP1110/6710 2025 S1

Fork and clone the comp1110-2025s1-workshops project.
Create a folder “ws4a”, and work in “DescendantsTree.java”.

Commit and push when you are done.

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

12

Person's descendant tree example

12/03/2025School of Computing | COMP1110/6710 2025 S1

Source: Wikipedia

Lucas Grey's descendant tree

Lucas has:
• 3 children (Mary, Jason, Peter)
• 5 grandchildren (Fred, Jane, Sean,

Jessica, Hannah); and
• 3 great-grandchildren (Joseph,

John, Laura)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Design the following functions:

1. Given the full name of a person (possible different from the person in the root of the tree), count
how many descendants of that person are there in a person's descendant tree. Hint: develop first
a function that counts how many descendants are there in a person's descendant tree.

2. Given a person's descendant tree, generate a list with the full names of (1) all descendants which
are females; (2) descendants still alive; (3) descendants born after a given date; (4) descendants
that have had 2 or more children born the same date. Note 1: you can develop a single higher-
order function to code (1)-(4). Note 2: the order of elements in the output list is not important; the
output of the function is correct as far all the requested full names are in the output list.

3. Given a person's descendant tree, return the name of the person that had their first children
earliest in their life among all parents in the tree. If more than one person fulfills this criterion,
return one of such people arbitrarily.

4. Given a person's descendant tree, returns a new tree where all males and their descendants are
removed from the input tree. Generalize the function such that this operation (removal of some
people and all their descendants) can be applied to any predicate passed as an argument to the
function.

13

Practice

12/03/2025School of Computing | COMP1110/6710 2025 S1

Fork and clone the comp1110-2025s1-workshops project.
Create a folder “ws4a”, and work in “DescendantsTree.java”.

Commit and push when you are done.

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-workshops

	1A
	Slide 1
	Slide 2: (Mutable) State
	Slide 3: Functional Programming
	Slide 4: Functional Programming
	Slide 5: Imperative Programming
	Slide 6: Imperative Programming
	Slide 7: Imperative Programming
	Slide 8
	Slide 9
	Slide 10: Back to Trees
	Slide 11: Practice
	Slide 12: Person's descendant tree example
	Slide 13: Practice

