
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

pollev.com/fabianm
Register for Engagement

Needs ANU Account!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Three steps you must do:

- Push Code on GitLab (can use assignment variables/extensions)

- Register for Code Walk (Base Deadline Day, 18:00, no extensions)

- Attend Code Walk at Scheduled Time

Two optional steps:

- Provide Particular Commit You Want to Submit (otherwise, latest
commit before base deadline)

- Provide Scheduling Preferences for Code Walk (otherwise, some
time during your registered tutorial time)

2

Recap: Assignments

18/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Next Monday, 24/3 COMP1110: 14:00 COMP6710: 17:30

No Materials! We’ll give you the Functional Java Standard
Library Documentation, as well as the Java Standard Library
Documentation from Oracle.
You can use Functional Java, regular Java, or any mix.
Make sure to produce working code!

3

Mid-Term Test

18/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Next Monday, 24/3 COMP1110: 14:00 COMP6710: 17:30

No Materials! Except Dictionaries with School Approval.
If you have a permission slip to use a dictionary, drop off
your dictionary at the Exams Office (Melville Hall) by
Thursday (this is a change from what was previously
announced, because we got central invigilation now).

4

Mid-Term Test

18/03/2025School of Computing | COMP1110/6710 2025 S1

(Mutable) State
(continued)
The stuff that some of you have already been
using, even though they should not have

Still illegal in P2, and only partially allowed (i.e.
using HashMaps) in the last part of U2

Not core material for mid-semester test, but may
show up in distinction-level part.

5 18/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

int timesTwo(int x) {
 return x * 2;
}

int timesThree(int x) {
 return x * 3;
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int timesTwo(int x) {

 return x * 2;

}

int timesThree(int x) {

 return x * 3;

}

Variables - Scope
where the same name refers to the same variable

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

int timesThree(int x) {
 int y = x * 2;
 return y + x;
}

Scope of x

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int timesThree(int x) {
 int y = x * 2;
 return y + x;
}

Variables - Scope
where the same name refers to the same variable

Scope of y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int timesThree(int x) {

 int y = x * 2;

 return y + x;
}

Variables - Scope
where the same name refers to the same variable

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

Scope of x

int someFunction(int x) {
 …
 if(x == 5) {
 int y = 3;
 return x + y;
 } else {
 int y = 4;
 return x + y;
 }
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

Scope of y (1)

int someFunction(int x) {
 …
 if(x == 5) {
 int y = 3;
 return x + y;
 } else {
 int y = 4;
 return x + y;
 }
}

Scope of y (2)

y (1)

y (2)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Programming

Each variable represents a single
value throughout its scope

14 18/03/2025

Imperative Programming

Each variable represents a single
slot whose content can be
accessed and changed
throughout its scope

New statement: assignment

[varName] = [expression]

e.g. x = 5 + 2;

School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

15

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

6

x

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

16

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

6

x

7

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

17

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

6

x

7

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

18

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

9

x

7

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

19

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

9

x

7

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

20

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

9

x

6

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

21

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

9

x

6

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

22

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

12

x

6

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

23

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

12

x

6

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

24

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

12

x

5

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

 int y = x + 1;

 x = y + 2;

 y = x – 3;

 x = y * 2;

 y = x – (y + 1);

 return x + y;

}

25

Variables as Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

someFunction(6) called

12

x

5

y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

1.) Global Variables (mostly a BIIIIIG NO-NO!)
int WORLD_HEIGHT = 500;

void doubleWorldHeight() {

WORLD_HEIGHT = WORLD_HEIGHT * 2;

}

26

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

Doing this often causes big issues for maintaining
and extending your code. EXTREMELY RARELY a good choice!

OK if constant

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}

27

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
 c.value = c.value * 2;
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}

28

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
 c.value = c.value * 2;
}

cell

5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}

29

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
 c.value = c.value * 2;
}

cell

5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}

30

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
 c.value = c.value * 2;
}

cell

5

c

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}

31

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
 c.value = c.value * 2;
}

cell

5

c

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}

32

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
 c.value = c.value * 2;
}

cell

10

c

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}

33

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
 c.value = c.value * 2;
}

cell

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}

34

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
 c.value = c.value * 2;
}

cell

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value
2B.) Via many reference types

35

Sharing Slots

18/03/2025School of Computing | COMP1110/6710 2025 S1

When the scopes of variables are often short-lived 10

A Reference

Live on the “heap”. They exist as long
as there are references to them
Live on the “stack”. They exist for as
long as a variable is in scope

Each can either contain a reference, or a value
of one of the primitive value types (lowercase):
boolean, byte, char, short, int, long, float, double

Their uppercase versions (Integer, Boolean, etc.) and String are heap values.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

value

36

Reference Values

18/03/2025School of Computing | COMP1110/6710 2025 S1

The things that live on the heap 10

Generally created with the “new” keyword.
 var cell = new Cell<>(10);

 var pair = new Pair<>(42, cell);

But also via functions that internally use “new”:
 var map = MakeHashMap();

And via some special language features:
 var helloworld = “Hello” + “World”;

 Integer myInt = 5;

 Function<Integer,Integer> id = x -> x;

cell first

second

42

pair

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Programming

ConsList-based Map (CLM)
CLM MakeConsMap(Pair<K, V>…)

CLM Put(CLM, K, V)

CLM Remove(CLM, K)

Maybe<V> Get(CLM, K)

boolean ContainsKey(CLM, K)

ConsList<K> GetKeys(CLM)

37 18/03/2025

Imperative Programming

HashMap (HM)
HM MakeHashMap(Pair<K, V>…)

void Put(HM, K, V)

void Remove(HM, K)

Maybe<V> Get(HM, K)

boolean ContainsKey(HM, K)

ConsList<K> GetKeys(HM)

School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Programming

ConsList-based Map (CLM)
CLM Put(CLM, K, V)

CLM Remove(CLM, K)

38 18/03/2025

Imperative Programming

HashMap (HM)
void Put(HM, K, V)

void Remove(HM, K)

School of Computing | COMP1110/6710 2025 S1

[opaque]

mapmap

(Nil)

var map = MakeConsMap();
map = Put(map, 5, 3);

var map = MakeHashMap();
Put(map, 5, 3);

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Programming

ConsList-based Map (CLM)
CLM Put(CLM, K, V)

CLM Remove(CLM, K)

39 18/03/2025

Imperative Programming

HashMap (HM)
void Put(HM, K, V)

void Remove(HM, K)

School of Computing | COMP1110/6710 2025 S1

[opaque]

mapmap

(Nil)

var map = MakeConsMap();
map = Put(map, 5, 3);

var map = MakeHashMap();
Put(map, 5, 3);

(Nil)element rest

first second

35

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Programming

ConsList-based Map (CLM)
CLM Put(CLM, K, V)

CLM Remove(CLM, K)

40 18/03/2025

Imperative Programming

HashMap (HM)
void Put(HM, K, V)

void Remove(HM, K)

School of Computing | COMP1110/6710 2025 S1

[opaque]

mapmap

(Nil)

var map = MakeConsMap();
map = Put(map, 5, 3);

var map = MakeHashMap();
Put(map, 5, 3);

(Nil)element rest

first second

35

The
Design Recipe
With Mutable State

41 18/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

1.) Figure out whether there should be mutable state in your data
structure. Oftentimes, the answer is NO. Shared information or a need
for memory are plausible reasons for YES.

2.) Be very explicit about which parts of your data might change, and
how. Use invariants to express constraints on valid changes.

Problem Analysis and Data Design

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Now that data can also flow via the heap, not just inputs and outputs,
you need to describe what happens there. Add this between the
purpose statement and the human signature (the “Design Strategy” in
step 4 goes above this, between effects and examples).
int counter = 0;

/** …
 * Effect: increases the global counter by 1
 * … */
void incCounter() {
 counter = counter + 1;
}

Purpose Statement, Signature, Effects

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Describe assumptions about relevant state in the example.

int counter = 0;

/** …
 * Examples:
 * Given: [nothing], and the global counter is 5
 * Expect: [nothing], and the global counter is 6
 * Effect: increases the global counter by 1
 * … */
void incCounter() {
 counter = counter + 1;
}

Examples

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Largely the same, but implementation allows for new things (e.g.
assignment).

45

Design Strategy; Implementation

18/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

2 main options for dealing with state:

1. initialize state at the start of a test case, so it matches your
expectations, and test state against fixed values at the end

2. check current state at the start of a test case, and calculate
expected values/final state from that

46

Tests

18/03/2025School of Computing | COMP1110/6710 2025 S1

U2

	1A
	Slide 1
	Slide 2: Recap: Assignments
	Slide 3: Mid-Term Test
	Slide 4: Mid-Term Test
	Slide 5: (Mutable) State (continued)
	Slide 6: Variables
	Slide 7: Variables - Scope
	Slide 8: Variables - Scope
	Slide 9: Variables - Scope
	Slide 10: Variables - Scope
	Slide 11: Variables - Scope
	Slide 12: Variables - Scope
	Slide 13: Variables - Scope
	Slide 14
	Slide 15: Variables as Slots
	Slide 16: Variables as Slots
	Slide 17: Variables as Slots
	Slide 18: Variables as Slots
	Slide 19: Variables as Slots
	Slide 20: Variables as Slots
	Slide 21: Variables as Slots
	Slide 22: Variables as Slots
	Slide 23: Variables as Slots
	Slide 24: Variables as Slots
	Slide 25: Variables as Slots
	Slide 26: Sharing Slots
	Slide 27: Sharing Slots
	Slide 28: Sharing Slots
	Slide 29: Sharing Slots
	Slide 30: Sharing Slots
	Slide 31: Sharing Slots
	Slide 32: Sharing Slots
	Slide 33: Sharing Slots
	Slide 34: Sharing Slots
	Slide 35: Sharing Slots
	Slide 36: Reference Values
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: The Design Recipe
	Slide 42: Problem Analysis and Data Design
	Slide 43: Purpose Statement, Signature, Effects
	Slide 44: Examples
	Slide 45: Design Strategy; Implementation
	Slide 46: Tests

