Structured Programmlng

wsgister i Engesement. COMP1110/6710

g »

—~=

“‘A ol ./‘ }

Recap: Assignments

Three steps you must do:

- Push Code on GitLab (can use assighment variables/extensions)
- Register for Code Walk (Base Deadline Day, 18:00, no extensions)
- Attend Code Walk at Scheduled Time

Two optional steps:

- Provide Particular Commit You Want to Submit (otherwise, latest
commit before base deadline)

- Provide Scheduling Preferences for Code Walk (otherwise, some
time during your registered tutorial time)

ine | COMPI110/671020251 ...,/ 18/03/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
2 School of Computing | COMP1110/6710 2025 S1 18/03/2026 L R e o2

Next Monday, 24/3 COMP1110: 14:00 COMP6710:17:30

No Materials! We’'ll give you the Functional Java Standard
Library Documentation, as well as the Java Standard Library
Documentation from Oracle.

You can use Functional Java, regular Java, or any mix.
Make sure to produce working code!

AA
OO

Next Monday, 24/3 COMP1110: 14:00 COMP6710:17:30

No Materials! Except Dictionaries with School Approval.

If you have a permission slip to use a dictionary, drop off
your dictionary at the Exams Office (Melville Hall) by
Thursday (this is a change from what was previously
announced, because we got central invigilation now).

AA
OO

5 School of Computing | COMP1110/6710 2025 St

(Mutable) State
(continued)

The stuff that some of you have already been
using, even though they should not have

Still illegal in P2, and only partially allowed (i.e.
using HashMaps) in the last part of U2
Australian

Not core material for mid-semester test, but may <= National

"
N

. . ; =~ University
show up in distinction-level part.

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

'

int timesTwo(int x) { int timesThree(int
return x * 2; return x * 3;

¥ }

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

x) {

)ﬂ}) =

Variables - Scope

where the same name refers to the same variable

N N

int timesTwo(int x) int timesThree(int x)

Variables - Scope
where the same name refers to the same variable

int timesThree(int x) {
int y = x * 2;

f X
return y + X; SCope o

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

...

Variables - Scope
where the same name refers to the same variable

int timesThree(int x) {
int y = x * 2;
return y + X; Scope of y

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

int timesThree(int x) {

int y = * 2;

\

return y + X;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables - Scope

where the same name refers to the same variable
int someFunction(int x)

Scope of X

Variables - Scope

where the same name refers to the same variable

int someFunction(int x) {

if(x == 5) {
y (1) int y = 3;
return X + y; Scope ofy (1)
} else {
} return X + y; Scope of vy (2)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

..

Functional Programming Imperative Programming

Each variable represents a single Each variable represents a single

value throughout its scope slot whose content can be
accessed and changed
throughout its scope

New statement: assighnment

[varName] = [expression]
e.g. X =5+ 2;

)ﬁ}) =

14 School of Computing | COMP1110/6710 2025 St 18/03/2025 S ROVbER G 0DE: 00120

Variables as Slots

someFunction(6) called

int someFunction(int x) {- 6

inty = x + 1;
X =Yy + 2;

y = X = 3;

x =y *2;

y =x-(y+1);
return X + vy,

School of Computing | COMP1110/6710 2025 S1

X

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

int
X =
y =
X =
y =

y
y
X

y
X

X + 1;
2;

3;

2;

(y +1);

return X + vy,

School of Computing | COMP1110/6710 2025 S1

{6

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

inty = x + 1;
X =Yy + 2;

y = X - 3;

x =y *2;

y =x-(y+1);
return X + vy,

School of Computing | COMP1110/6710 2025 S1

(=

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

inty = x + 1;
X =Yy + 2;

y = X - 3;

x =y *2;

y =x-(y+1);
return X + vy,

School of Computing | COMP1110/6710 2025 S1

(=

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

int
X =
y =
X =
y =

y
y
X

y
X

X + 1;
2;

3;

2;

(y +1);

return X + vy,

School of Computing | COMP1110/6710 2025 S1

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

20

int
X =
y =
X =
y =

y
y
X

y
X

X + 1;
2;

3;

2;

(y +1);

return X + vy,

School of Computing | COMP1110/6710 2025 S1

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

21

int
X =
y =
X =
y =

y
y
X

y
X

X + 1;
2;

3;

2;

(y +1);

return X + vy,

School of Computing | COMP1110/6710 2025 S1

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

22

int
X =
y =
X =
y =

y
y
X

y
X

X + 1;
2;

3;

2;

(y +1);

return X + vy,

School of Computing | COMP1110/6710 2025 S1

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

23

int
X =
y =
X =
y =

y
y
X

y
X

X + 1;
2;

3;

2;

(y +1);

return X + vy,

School of Computing | COMP1110/6710 2025 S1

G 12

X

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

24

int
X =
y =
X =
y =

y
y
X

y
X

X + 1;
2;

3;

2;

(y +1);

return X + vy,

School of Computing | COMP1110/6710 2025 S1

G 12

X

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variables as Slots

someFunction(6) called

int someFunction(int x) {

25

int
X =
y =
X =
y =

y
y
X

y
X

X + 1;
2;

3;

2;

(y +1);

return X + vy,

School of Computing | COMP1110/6710 2025 S1

18/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Sharing Slots

When the scopes of variables are often short-lived

1.) Global Variables (mostly a BlllIIG NO-NOQ!)
int WORLD_HEIGHT = 500; <N OK if constant
void doubleWorldHeight() {

WORLD HEIGHT = WORLD HEIGHT * 2;

Doing this often causes big issues for maintaining
and extending your code. EXTREMELY RARELY a good choice!

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
26 School of Computing | COMP1110/6710 2025 S1 18/03/2025 (T:ERIC;SPPRRO\CFDEERRIQOPDRE\:/ AAAAAAAAAAAAAAAAAAAAAAAA

Sharing Slots

When the scopes of variables are often short-lived

2A.) Via Cell<T>

int myFun() {
var cell=new Cell<Integer>(5);
cellDouble(cell);
return cell.value;

¥

void cellDouble(Cell<Integer> c) {
c.value = c.value * 2;

¥

ing | COMP1110/67102025S118/03/2025s @ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
27 School of Computing | COMP1110/6710 2025 St 18/03/2025 e &

)ﬂ}) =

Sharing Slots

When the scopes of variables are often short-lived S
value

2A.) Via Cell<T>

int myFun() {
var cell=new Cell<Integer>(5); -
cellDouble(cell); cell
return cell.value;

¥

void cellDouble(Cell<Integer> c) {
c.value = c.value * 2;

¥

ine | COMPI110/67102025s1 . 18/03/2025 TEQSAPROVIDERID : PRVI2002 (AUSTRALIAN UNIVERSITY)
28 School of Computing | COMP1110/6710 2025 S1 18/03/2025 CRICOS PROVIDER CODE: 00120C

...

Sharing Slots

When the scopes of variables are often short-lived S
value

2A.) Via Cell<T>
int myFun() {
var cell=new Cell<Integer>(5);

cellDouble(cell); -

return cell.value; cell

¥

void cellDouble(Cell<Integer> c) {
c.value = c.value * 2;

¥

ine | COMPI110/67102025s1 . 18/03/2025 TEQSAPROVIDERID : PRVI2002 (AUSTRALIAN UNIVERSITY)
29 School of Computing | COMP1110/6710 2025 S1 18/03/2025 CRICOS PROVIDER CODE: 00120C

...

Sharing Slots

When the scopes of variables are often short-lived S
value

2A.) Via Cell<T>

int myFun() {
var cell=new Cell<Integer>(5);
cellDouble(cell);
return cell.value; cell

¥

void cellDouble(Cell<Integer> c) { -
c.value = c.value * 2;

¥

30 School of Computing | COMP1110/6710 2025 St 18/03/2025 ~ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

Sharing Slots

When the scopes of variables are often short-lived S
value

2A.) Via Cell<T>

int myFun() {
var cell=new Cell<Integer>(5);
cellDouble(cell);
return cell.value; cell

}
void cellDouble(Cell<Integer> c) {

c.value = c.value * 2; -

} c

31 School of Computing | COMP1110/6710 2025 St 18/03/2025 ~ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

Sharing Slots

When the scopes of variables are often short-lived 10
value

2A.) Via Cell<T>

int myFun() {
var cell=new Cell<Integer>(5);
cellDouble(cell);
return cell.value; cell

}
void cellDouble(Cell<Integer> c) {

c.value = c.value * 2; -

} c

32 School of Computing | COMP1110/6710 2025 St 18/03/2025 ~ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

Sharing Slots

When the scopes of variables are often short-lived 10
value

2A.) Via Cell<T>
int myFun() {
var cell=new Cell<Integer>(5);

cellDouble(cell); -

return cell.value; cell

¥

void cellDouble(Cell<Integer> c) {
c.value = c.value * 2;

¥

ine | COMPI110/67102025s1 . 18/03/2025 TEQSAPROVIDERID : PRVI2002 (AUSTRALIAN UNIVERSITY)
33 School of Computing | COMP1110/6710 2025 S1 18/03/2025 CRICOS PROVIDER CODE: 00120C

...

Sharing Slots

When the scopes of variables are often short-lived 10
value

2A.) Via Cell<T>
int myFun() {
var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value; -

} cell

void cellDouble(Cell<Integer> c) {
c.value = c.value * 2;

¥

ing | COMP1110/67102025S118/03/2025s @ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
34 School of Computing | COMP1110/6710 2025 St 18/03/2025 e &

...

Sharing Slots

When the scopes of variables are often short-lived

10

value

2B.) Via many reference types
Live on the “heap”. They exist as long
as there are references to them
_ j . _ A Reference
Live on the “stack”. They exist for as
long as a variable is in scope

Each can either contain a reference, or a value
of one of the primitive value types (lowercase):
boolean, byte, char, short, int, long, float, double

Their uppercase versions (Integer, Boolean, etc.) and String are heap values.

)ﬁ}) =

RR

35 School of Computing | COMP1110/6710 2025 ST 18/03/2025 S ROVbER G 0DE: 00120

Reference Values
The things that live on the heap

Generally created with the “new” keyword.
var cell = new Cell<>(10);
var pair = new Pair<>(42, cell);

But also via functions that internally use “new”:
var map = MakeHashMap();

And via some special language features:
var helloworld = “Hello” + “World”;
Integer myInt = 5;
Function<Integer,Integer> id = x -> X;

36 School of Computing | COMP1110/6710 2025 S1 18/03/2025

second

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

)ﬁ}) =

Functional Programming Imperative Programming

ConsList-based Map (CLM) HashMap (HM)

CLM MakeConsMap(Pair<K, V>..) HM MakeHashMap(Pair<K, V>..)
CLM Put(CLM, K, V) void Put(HM, K, V)

CLM Remove(CLM, K) void Remove(HM, K)

Maybe<V> Get(CLM, K) Maybe<V> Get(HM, K)

boolean ContainsKey(CLM, K) boolean ContainsKey(HM, K)

ConsList<K> GetKeys(CLM) ConsList<K> GetKeys(HM)

ine | COMPI110/671020251 ...,/ 18/03/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
37 School of Computing | COMP1110/6710 2025 S1 18/03/2026 L R e o2

Functional Programming
ConsList-based Map (CLM)
CLM Put(CLM, K, V)

CLM Remove(CLM, K)

(Nil)

var map = MakeConsMap(); «
map = Put(map, 5, 3); map

38 School of Computing | COMP1110/6710 2025 St

Imperative Programming
HashMap (HM)

void Put(HM, K, V)
void Remove(HM, K)

[opaque]

var map = MakeHashMap(); -\

Put(map, 5, 3); map

&)..

18/03/2025 @ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)
CCCCCCCCCCCCCCCCCC = 00120C

Functional Programming Imperative Programming

ConslList-based Map (CLM) HashMap (HM)
CLM Put(CLM, K, V) void Put(HM, K, V)
CLM Remove(CLM, K) void Remove(HM, K)
[opaque]
(Nil)
map ~ Putimap, 5.9 dam i
map map
S) 3 -
first second \~. -]
element rest (Nil

39 School of Computing | COMP1110/6710 2025 St 18/03/2025 EER?CSL?SPPR:OVV‘FSERRIgb?g\;”ozg% AAAAAAAAAAAAAAAAAAAA

Functional Programming
ConsList-based Map (CLM)
CLM Put(CLM, K, V)

CLM Remove(CLM, K)

]
(Nil)

var map = MakeConsMap();

map = Put(map, 5, 3); «
map
5 3

Imperative Programming

HashMap (HM)
void Put(HM, K, V)
void Remove(HM, K)

[opaque]

var map = MakeHashMap();

Put(map, 5, 3); -

‘\'

first second

element rest

40 School of Computing | COMP1110/6710 2025 St

(Nil)

18/03/2025 @ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

The
Design Recipe

With Mutable State

=/ Australian
= National

\

==~ University

8thool of Computing | COMP1110/67102025 St 18/03/2025

Problem Analysis and Data Design

1.) Figure out whether there should be mutable state in your data
structure. Oftentimes, the answer is NO. Shared information or a need
for memory are plausible reasons for YES.

2.) Be very explicit about which parts of your data might change, and
how. Use invariants to express constraints on valid changes.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

)ﬁ}) =

Purpose Statement, Signature, Effects

Now that data can also flow via the heap, not just inputs and outputs,
you need to describe what happens there. Add this between the
purpose statement and the human signature (the “Design Strategy” in
step 4 goes above this, between effects and examples).

int counter = 0;

/**
* Effect: increases the global counter by 1
* L */

void incCounter() {
counter = counter + 1;

}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

&)..

Examples

Describe assumptions about relevant state in the example.

int counter = 0;

/X* L
Examples:
Given: [nothing], and the global counter is 5
Expect: [nothing], and the global counter is 6
Effect: increases the global counter by 1
L%/
void incCounter() {
counter = counter + 1;

* ¥ X X

}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Design Strategy; Implementation

Largely the same, but implementation allows for new things (e.g.

assignment).

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Tests

2 main options for dealing with state:

1.

46

initialize state at the start of a test case, so it matches your
expectations, and test state against fixed values at the end

check current state at the start of a test case, and calculate
expected values/final state from that

School of Computing | COMP1110/6710 2025 St 18/03/2025 ~ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVER

OOOOOOOOOOOOOOOOOOOOOOOO

€m0

SSSSS

	1A
	Slide 1
	Slide 2: Recap: Assignments
	Slide 3: Mid-Term Test
	Slide 4: Mid-Term Test
	Slide 5: (Mutable) State (continued)
	Slide 6: Variables
	Slide 7: Variables - Scope
	Slide 8: Variables - Scope
	Slide 9: Variables - Scope
	Slide 10: Variables - Scope
	Slide 11: Variables - Scope
	Slide 12: Variables - Scope
	Slide 13: Variables - Scope
	Slide 14
	Slide 15: Variables as Slots
	Slide 16: Variables as Slots
	Slide 17: Variables as Slots
	Slide 18: Variables as Slots
	Slide 19: Variables as Slots
	Slide 20: Variables as Slots
	Slide 21: Variables as Slots
	Slide 22: Variables as Slots
	Slide 23: Variables as Slots
	Slide 24: Variables as Slots
	Slide 25: Variables as Slots
	Slide 26: Sharing Slots
	Slide 27: Sharing Slots
	Slide 28: Sharing Slots
	Slide 29: Sharing Slots
	Slide 30: Sharing Slots
	Slide 31: Sharing Slots
	Slide 32: Sharing Slots
	Slide 33: Sharing Slots
	Slide 34: Sharing Slots
	Slide 35: Sharing Slots
	Slide 36: Reference Values
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: The Design Recipe
	Slide 42: Problem Analysis and Data Design
	Slide 43: Purpose Statement, Signature, Effects
	Slide 44: Examples
	Slide 45: Design Strategy; Implementation
	Slide 46: Tests

