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Structured Programming

Image Courtesy NASA/JPL-Caltech.
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Register for Engagement

Needs ANU Account!



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Three steps you must do:

- Push Code on GitLab (can use assignment variables/extensions)

- Register for Code Walk (Base Deadline Day, 18:00, no extensions)

- Attend Code Walk at Scheduled Time

Two optional steps:

- Provide Particular Commit You Want to Submit (otherwise, latest 
commit before base deadline)

- Provide Scheduling Preferences for Code Walk (otherwise, some 
time during your registered tutorial time)
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Recap: Assignments
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Next Monday, 24/3       COMP1110: 14:00       COMP6710: 17:30

No Materials! We’ll give you the Functional Java Standard 
Library Documentation, as well as the Java Standard Library 
Documentation from Oracle. 
You can use Functional Java, regular Java, or any mix.
Make sure to produce working code!
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Mid-Term Test
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Next Monday, 24/3       COMP1110: 14:00       COMP6710: 17:30

No Materials! Except Dictionaries with School Approval.
If you have a permission slip to use a dictionary, drop off 
your dictionary at the Exams Office (Melville Hall) by 
Thursday (this is a change from what was previously 
announced, because we got central invigilation now).
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Mid-Term Test
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(Mutable) State
(continued)
The stuff that some of you have already been 
using, even though they should not have

Still illegal in P2, and only partially allowed (i.e. 
using HashMaps) in the last part of U2

Not core material for mid-semester test, but may
show up in distinction-level part.
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Variables



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

int timesTwo(int x) {
    return x * 2;
}

int timesThree(int x) {
    return x * 3;
}
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int timesTwo(int x) {

    return x * 2;

}

int timesThree(int x) {

    return x * 3;

}

Variables - Scope
where the same name refers to the same variable



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

int timesThree(int x) {
    int y = x * 2;
    return y + x;
}

Scope of x



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

int timesThree(int x) {
    int y = x * 2;
    return y + x;
}

Variables - Scope
where the same name refers to the same variable

Scope of y
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CRICOS PROVIDER CODE: 00120C

int timesThree(int x) {

    int y = x * 2;

    return y + x;
}

Variables - Scope
where the same name refers to the same variable



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

Scope of x

int someFunction(int x) {
    …
    if(x == 5) {
       int y = 3;
       return x + y;
    } else {
       int y = 4;
       return x + y;
    }
}



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Variables - Scope
where the same name refers to the same variable

Scope of y (1)

int someFunction(int x) {
    …
    if(x == 5) {
       int y = 3;
       return x + y;
    } else {
       int y = 4;
       return x + y;
    }
}

Scope of y (2)

y (1)

y (2)



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Functional Programming

Each variable represents a single 
value throughout its scope
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Imperative Programming

Each variable represents a single 
slot whose content can be 
accessed and changed 
throughout its scope

New statement: assignment

[varName] = [expression]

e.g. x = 5 + 2;
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

    int y = x + 1;

    x = y + 2;

    y = x – 3;

    x = y * 2;

    y = x – (y + 1);

    return x + y;

}
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Variables as Slots
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someFunction(6) called

6

x



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {

    int y = x + 1;

    x = y + 2;

    y = x – 3;

    x = y * 2;

    y = x – (y + 1);

    return x + y;

}
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Variables as Slots
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int someFunction(int x) {

    int y = x + 1;
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    y = x – (y + 1);

    return x + y;

}
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Variables as Slots
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int someFunction(int x) {
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    y = x – (y + 1);

    return x + y;

}
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Variables as Slots
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Variables as Slots
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Variables as Slots
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Variables as Slots

18/03/2025School of Computing    |     COMP1110/6710 2025 S1

someFunction(6) called

9

x

6

y



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

int someFunction(int x) {
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Variables as Slots
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Variables as Slots
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Variables as Slots
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Variables as Slots
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

1.) Global Variables (mostly a BIIIIIG NO-NO!)
int WORLD_HEIGHT = 500;

void doubleWorldHeight() {

WORLD_HEIGHT = WORLD_HEIGHT * 2;

}
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Sharing Slots
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When the scopes of variables are often short-lived

Doing this often causes big issues for maintaining
and extending your code. EXTREMELY RARELY a good choice!

OK if constant



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}
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Sharing Slots
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When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
    c.value = c.value * 2;
}



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
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value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}
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Sharing Slots
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When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
    c.value = c.value * 2;
}

cell

5
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value
2A.) Via Cell<T>
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cellDouble(cell);

return cell.value;

}
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When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
    c.value = c.value * 2;
}

cell
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value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}
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Sharing Slots
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When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
    c.value = c.value * 2;
}

cell
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value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}
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Sharing Slots
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When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
    c.value = c.value * 2;
}

cell
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c
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CRICOS PROVIDER CODE: 00120C

value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}
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Sharing Slots
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When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
    c.value = c.value * 2;
}

cell
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c
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value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}
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Sharing Slots
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When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
    c.value = c.value * 2;
}

cell
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value
2A.) Via Cell<T>

int myFun() {

var cell=new Cell<Integer>(5);

cellDouble(cell);

return cell.value;

}
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Sharing Slots
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When the scopes of variables are often short-lived

void cellDouble(Cell<Integer> c) {
    c.value = c.value * 2;
}

cell
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

value
2B.) Via many reference types
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Sharing Slots
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When the scopes of variables are often short-lived 10

A Reference

Live on the “heap”. They exist as long 
as there are references to them
Live on the “stack”. They exist for as
long as a variable is in scope

Each can either contain a reference, or a value
of one of the primitive value types (lowercase):
boolean, byte, char, short, int, long, float, double

Their uppercase versions (Integer, Boolean, etc.) and String are heap values.



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

value

36

Reference Values
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The things that live on the heap 10

Generally created with the “new” keyword.
  var cell = new Cell<>(10);

  var pair = new Pair<>(42, cell);

But also via functions that internally use “new”:
  var map = MakeHashMap();

And via some special language features:
  var helloworld = “Hello” + “World”;

  Integer myInt = 5;

  Function<Integer,Integer> id = x -> x;

cell first

second

42

pair



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Functional Programming

ConsList-based Map (CLM)
CLM MakeConsMap(Pair<K, V>…)

CLM Put(CLM, K, V)

CLM Remove(CLM, K)

Maybe<V> Get(CLM, K)

boolean ContainsKey(CLM, K)

ConsList<K> GetKeys(CLM)

37 18/03/2025

Imperative Programming

HashMap (HM)
HM MakeHashMap(Pair<K, V>…)

void Put(HM, K, V)

void Remove(HM, K)

Maybe<V> Get(HM, K)

boolean ContainsKey(HM, K)

ConsList<K> GetKeys(HM)
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Functional Programming

ConsList-based Map (CLM)
CLM Put(CLM, K, V)

CLM Remove(CLM, K)
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Imperative Programming

HashMap (HM)
void Put(HM, K, V)

void Remove(HM, K)
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[opaque]

mapmap

(Nil)

var map = MakeConsMap();
map = Put(map, 5, 3);

var map = MakeHashMap();
Put(map, 5, 3);
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Functional Programming

ConsList-based Map (CLM)
CLM Put(CLM, K, V)

CLM Remove(CLM, K)
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Imperative Programming

HashMap (HM)
void Put(HM, K, V)

void Remove(HM, K)
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[opaque]

mapmap

(Nil)

var map = MakeConsMap();
map = Put(map, 5, 3);

var map = MakeHashMap();
Put(map, 5, 3);

(Nil)element          rest

first      second
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Functional Programming

ConsList-based Map (CLM)
CLM Put(CLM, K, V)

CLM Remove(CLM, K)
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Imperative Programming

HashMap (HM)
void Put(HM, K, V)

void Remove(HM, K)
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[opaque]

mapmap

(Nil)

var map = MakeConsMap();
map = Put(map, 5, 3);

var map = MakeHashMap();
Put(map, 5, 3);

(Nil)element          rest

first      second
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The
Design Recipe
With Mutable State
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

1.) Figure out whether there should be mutable state in your data 
structure. Oftentimes, the answer is NO. Shared information or a need 
for memory are plausible reasons for YES.

2.) Be very explicit about which parts of your data might change, and 
how. Use invariants to express constraints on valid changes.

Problem Analysis and Data Design



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Now that data can also flow via the heap, not just inputs and outputs, 
you need to describe what happens there. Add this between the 
purpose statement and the human signature (the “Design Strategy” in 
step 4 goes above this, between effects and examples).
int counter = 0;

/** …
 * Effect: increases the global counter by 1
 * … */
void incCounter() {
    counter = counter + 1;
}

Purpose Statement, Signature, Effects



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Describe assumptions about relevant state in the example.

int counter = 0;

/** …
 * Examples:
 * Given: [nothing], and the global counter is 5
 * Expect: [nothing], and the global counter is 6
 * Effect: increases the global counter by 1
 * … */
void incCounter() {
    counter = counter + 1;
}

Examples



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Largely the same, but implementation allows for new things (e.g. 
assignment).

45

Design Strategy; Implementation
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TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

2 main options for dealing with state:

1. initialize state at the start of a test case, so it matches your 
expectations, and test state against fixed values at the end

2. check current state at the start of a test case, and calculate 
expected values/final state from that

46

Tests
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