
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

Imperative Statically-Typed

Classes &
Objects

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Objects

State Behavior

Objects have identity
- They live on the heap
- They are usually created with new
- == compares objects for identity

Objects know themselves:
- Their data (state)
- Their operations (behavior)
➔Different objects may differ both

in data and in operations

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Classes

25/03/2025School of Computing | COMP1110/6710 2025 S1

Image Author: Picanox; Public Domain

Data Description

Module System

Subtyping/Polymorphism

Compilation Unit

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

6

Classes as Data Description

25/03/2025School of Computing | COMP1110/6710 2025 S1

Collections of Objects with the same kinds of data and operations

class Point {
 int x;
 int y;
 double getAngle() {
 …
 }
}

Point(5,3)

Point(7,4)

Point(9,5)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

7

Classes as Compilation Unit

25/03/2025School of Computing | COMP1110/6710 2025 S1

So far, we always ran a single Java file, but what if you want more?

Java is a compiled language, meaning that creating programs has multiple steps.
In Java:

Source Code Compiler Intermediate Code Runtime Machine Code

Specialized to your
Hardware/Operating System

Platform-Independent

As used so far Java

javac --enable-preview –source 23
[yourfile].java

[yourfile(s)].java Creates class files

java --enable-preview [yourfile.java] [class name] Runs programs

Fields &
Constructors

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

class Point {

 int x;

 int y;

 …

}

Fields
Like Records, Classes have Fields

Point p = …; //coming up

int x = p.x; //field access

p.x = x + 3; //assignment

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

10

Default Constructors

25/03/2025School of Computing | COMP1110/6710 2025 S1

class Point {

 int x;

 int y;

}

Point p = new Point();

int x = p.x; //x is 0 here

p.x = x + 3;

p.y = 15;

Automatically there if you define no others

Default Values:
Number types: 0
Booleans: false
All others: null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

11

Constructors

25/03/2025School of Computing | COMP1110/6710 2025 S1

class Point {

 int x;

 int y;

 Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

}

Point p = new Point(42, 15);

int x = p.x; //x is 42 here

p.x = x + 3;

Initializing your Objects better

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

12

Constructors

25/03/2025School of Computing | COMP1110/6710 2025 S1

class Point {
 int x;
 int y;
 Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 Point(int c) {
 this.x = c;
 this.y = c;
 }
}

Point p = new Point(42, 15);

int x = p.x; //x is 42 here

p.x = x + 3;

Point p2 = new Point(11);

p.y = p2.y; //assigns 11

You can have several of them

Arrays & null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Represent uninitialized variables

String str; //Declaration Stmt

// str == null at this point

// str.length() causes

// Null Pointer Exception

str = “hello”;

str.length(); // 5

null – the “Billion Dollar Mistake”
Every reference (i.e. non-primitive) type contains one special value: null

Represent the absence of a value

Map<String, String> map =

 new HashMap<>();

String str = map.get(“Hello”);

// str == null at this point

Like the Maybe type we’ve seen

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

15

Arrays

25/03/2025School of Computing | COMP1110/6710 2025 S1

Storing many values at once

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

16

Arrays

25/03/2025School of Computing | COMP1110/6710 2025 S1

Storing many values at once

String[] strings = new String[3];

strings[0] = “Hello”;

strings[1] = “World”;

strings[2] = “!”;

[0]

[1]

[2]

strings

null

null

null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

17

Arrays

25/03/2025School of Computing | COMP1110/6710 2025 S1

Storing many values at once

String[] strings = new String[3];

strings[0] = “Hello”;

strings[1] = “World”;

strings[2] = “!”;

[0]

[1]

[2]

strings

null

null

null

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

18

Arrays

25/03/2025School of Computing | COMP1110/6710 2025 S1

Storing many values at once

String[] strings = new String[3];

strings[0] = “Hello”;

strings[1] = “World”;

strings[2] = “!”;

[0]

[1]

[2]

strings

null

null

“Hello”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

19

Arrays

25/03/2025School of Computing | COMP1110/6710 2025 S1

Storing many values at once

String[] strings = new String[3];

strings[0] = “Hello”;

strings[1] = “World”;

strings[2] = “!”;

[0]

[1]

[2]

strings

null

null

“Hello”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

20

Arrays

25/03/2025School of Computing | COMP1110/6710 2025 S1

Storing many values at once

String[] strings = new String[3];

strings[0] = “Hello”;

strings[1] = “World”;

strings[2] = “!”;

[0]

[1]

[2]

strings null

“Hello”

“World”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

21

Arrays

25/03/2025School of Computing | COMP1110/6710 2025 S1

Storing many values at once

String[] strings = new String[3];

strings[0] = “Hello”;

strings[1] = “World”;

strings[2] = “!”;

[0]

[1]

[2]strings

null

“Hello”

“World”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

22

Arrays

25/03/2025School of Computing | COMP1110/6710 2025 S1

Storing many values at once

String[] strings = new String[3];

strings[0] = “Hello”;

strings[1] = “World”;

strings[2] = “!”;

Alternatively:

String[] strings = new
 String[]{“Hello”, “World”, “!”};

[0]

[1]

[2]strings

“Hello”

“World”

“!”

Loops

An alternative to recursion

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

For-loops
Where termination is more likely

General for:

for(int i=0; i < 10; i++) {

 println(i);

}

“Enhanced” for:

var strings = MakeList(“A”, B”);

for(var str : strings) {

 println(str);

}

Works for many different list-like
data types (we’ll see more examples).

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

For-loops with Arrays
Where termination is more likely

General for:

String[] strs = …;

for(int i=0; i < strs.length; i++)
{

 println(strs[i]);

}

“Enhanced” for:

String[] strings = …;

for(var str : strings) {

 println(str);

}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

While loops
More general, but much more likely to never stop

while:

String[] strs = …;

for(int i=0; i < strs.length; i++)
{

 println(strs[i]);

}

do-while:

String[] strings = …;

for(var str : strings) {

 println(str);

}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Every loop has a condition:

- for: the middle expression e.g.
in for(int i=0; i < 10; i++)

- enhanced for: there are more
elements in the list/array

- while/do-while: the boolean
expression after while

When the condition is true, the
loop jumps back to the start

27

Evaluation Order

25/03/2025School of Computing | COMP1110/6710 2025 S1

Not just top-down anymore

Two special statements:

break; - end the loop right now,
ignoring the condition

continue; - go back to the start
of the loop right now – in for-loops,
use next element

Methods

Functions Associated With a Data Type

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public class Person {

 String firstName;

 String lastName;

 String getFullName() {

 return firstName + this.lastName;

 }

}

Methods
Functions Associated With a Data Type

Objects know themselves. Can be omitted
in many cases (see firstName).

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

[import statements go here]

public class MyClass {

 public static void main(String[] args) {

 System.out.println(“Hello World!”);

 }

}z

30

Public Static Void Main

25/03/2025School of Computing | COMP1110/6710 2025 S1

Or: main methods in Java

Need to write this in front of every println

In a file called “MyClass.java”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

In standard Java:

- Write the hello-world program

In extended functional Java (i.e. with –enable-preview)

- Write a number-guessing game: generate a random number between
1 and 100, and let the user guess numbers, telling them whether the
actual number is larger or smaller than their guess, until they got the
right answer.

- Write a tree class (with arbitrary numbers of children per node) that
has a method which returns how many nodes it has, i.e.
int countNodes() [no arguments]

31

Practice

25/03/2025School of Computing | COMP1110/6710 2025 S1

	1A
	Slide 1
	Slide 2
	Slide 3: Classes & Objects
	Slide 4: Objects
	Slide 5: Classes
	Slide 6: Classes as Data Description
	Slide 7: Classes as Compilation Unit
	Slide 8: Fields & Constructors
	Slide 9: Fields
	Slide 10: Default Constructors
	Slide 11: Constructors
	Slide 12: Constructors
	Slide 13: Arrays & null
	Slide 14: null – the “Billion Dollar Mistake”
	Slide 15: Arrays
	Slide 16: Arrays
	Slide 17: Arrays
	Slide 18: Arrays
	Slide 19: Arrays
	Slide 20: Arrays
	Slide 21: Arrays
	Slide 22: Arrays
	Slide 23: Loops
	Slide 24: For-loops
	Slide 25: For-loops with Arrays
	Slide 26: While loops
	Slide 27: Evaluation Order
	Slide 28: Methods
	Slide 29: Methods
	Slide 30: Public Static Void Main
	Slide 31: Practice

