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class Person {
   String firstName;
   String lastName;
   Person(String firstName, String lastName) {
      this.firstName = firstName;
      this.lastName = lastName;
   }
   String getFullName() {
      return firstName + “ “ + lastName;
   }
}
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Recap + Definitions: Classes
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Fields

Constructor

(instance)
Method

Members



More on 
Methods
Every reference value has methods
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Things we’ll cover in this course:
“hello”.equals(“world”)

     Equals(“hello”, “world”)

new HashMap<>().toString()

     ToString(new HashMap<>())

CurrentDate().getHashCode()
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Any reference value
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Things we likely won’t cover:
“hello”.getClass()

“hello”.notify()

“hello”.notifyAll()

“hello”.wait()
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Functional Java:
Concatenate(“hello”, “world”)

SubString(“hello”, 2, 4)

Contains(“hello”, “ell”)

Replace(“ell”, “ih”, “hello”)

Length(“hello”)

GetCharAt(“hello”, 1)

…

Strings

Java:
“hello”.concat(“world”)

“hello”.substring(2, 4)

“hello”.contains(“ell”)

“hello”.replace(“ell”, “ih”)

“hello”.length()

“hello”.charAt(1)

…

See also https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/String.html
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Remember function.apply(…) ? predicate.test(…) ?

Turns out those are method calls on function objects.
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Lambdas/Function References
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[expression] . [method-name] ( [expression] … )

   “receiver”                                         other arguments

becomes “this” in method code

For an “instance” method call, you always need a receiver.

What if you don’t have one?
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Method Calls
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Static 
Members
Class members of which there is only one copy

- No different values for different objects
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class Bean {

   int number;

   static int counter;

   Bean() {

      number = counter++;

   }

}

Static Fields

A single field shared by all Beans

Seen with for-loops before. Increases variable by 1,
returns old value from before increase.

Access from outside the class:
Bean.counter

In general:
[class name] . [static field name]
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Static Methods
Essentially global functions, but grouped into a class

Functional Java:
StringToInt(“24”)

StringToDouble(“5.2”)

…

Sin(0.5)

Round(0.5)

RoundInt(0.5)

…

Java:
Integer.parseInt(“24”)

Double.parseDouble(“5.2”)

…

Math.sin(0.5)

Math.round(0.5)

Math.toIntExact(Math.round(0.5))

…
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[import statements go here]

public class MyClass {

    public static void main(String[] args) {

        System.out.println(“Hello World!”);

    }

}

11

Public Static Void Main
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Or: main methods in Java

No “this” available inside a static method!

In a file called “MyClass.java”
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[import statements go here]

public class MyClass {

    public static void main(String[] args) {

        System.out.println(“Hello World!”);

    }

}
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Public Static Void Main
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Or: main methods in Java

A class

In a file called “MyClass.java”
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[import statements go here]

public class MyClass {

    public static void main(String[] args) {

        System.out.println(“Hello World!”);

    }

}
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Public Static Void Main
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Or: main methods in Java

A static field access (to a PrintStream)

In a file called “MyClass.java”
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[import statements go here]

public class MyClass {

    public static void main(String[] args) {

        System.out.println(“Hello World!”);

    }

}
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Public Static Void Main
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Or: main methods in Java

An instance method call

In a file called “MyClass.java”
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--enable-preview does several things:

- Wrap everything in a class named like the file

- Enable instance main methods (so main does not have to be static)

- Enable main methods without String[] args

- Automatically import a number of standard libraries

- Add some special standard libraries for println, print, and readln
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Wait – how did this work before?
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FYI: https://openjdk.org/jeps/477

Distinction-Level Content
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void main() {

   println(sum(1, 2));

}

int sum(int a, int b) {

   return a + b;

}

16

Wait – how did this work before?
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FYI: https://openjdk.org/jeps/477

Distinction-Level Content

import static java.io.IO.*;
public class Test {
   public static void main(String[] args) {
   new Test().main();
   }
   void main() {
      println(sum(1, 2));
   }
   int sum(int a, int b) {
      return a + b;
   }
}

If file is called “Test.java”



The Design 
Recipe
Adjustments for Classes
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For the purposes of this step, for now, classes are essentially records,

with the following adjustments:

- @param annotations go the the constructor(s)

- Each field will still need an interpretation on its own.

The template is like a record template, i.e. essentially a list of fields.

As with records, this may become more interesting with recursion.

1. Problem Analysis and Data Design
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/** Represents a monotonically increasing counter.
 *  Examples: Counter(5), Counter(10532)
 *  @implSpec Invariant: the counter value only ever
 *  increases.
 */
class Counter {
  /** The current value of the counter >= 0 */
  int counterValue;
  /** 
   * Creates a new Counter
   * @param startValue – the starting value of the counter >= 0
   */
  Counter(int startValue) {
    counterValue = startValue;
  }
}

1. Problem Analysis and Data Design
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Same as for functions, for all of

- (instance) methods

- Static methods

- Constructors

Note: constructors don’t have an @return spec.

Particularly important: effects, pre/postconditions, invariants
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2. Purpose Statement & Signature

26/03/2025School of Computing    |     COMP1110/6710 2025 S1



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Same as for functions, for all of

- (instance) methods

- Static methods

- Constructors

Note: constructors that just assign fields directly from arguments don’t 
need examples.
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3. Examples
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Same as before, but you may now nest case distinctions (to a 
reasonable degree. Don’t make your code too complicated – create 
helper functions!).

You also do not have to include return statements in branches. You may 
continue after an if-statement, and omit the else-branch.

Finally, a new Design Strategy: iteration
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4. Design Strategy
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Similar to Case Distinction, but more important. If you are doing both, 
call the Design Strategy “Iteration”.

Iteration allows you to use loops (for/enhanced for/while/do-while).

Iteration may be nested (again, to a reasonable degree), and multiple 
loops can follow each other (yet again, to a reasonable degree).

IMPORTANT: each loop needs a comment on why it should terminate 
(where applicable)
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4. Design Strategy: Iteration
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// i is not assigned within body,

// but increased towards end

// condition at every iteration

for(int i=0; i<10; i++) {

    …

}
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4. Design Strategy: Iteration
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// iterating over finite-size data

// structure

for(String name : names) {

    …

}
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// termination upon user input

while(true) {

    if(readln().equals(“q”)) {

        break;

    }

}
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4. Design Strategy: Iteration
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// integer bounds are always
// moving closer together
do {
    …
    if(…) {
        i++;
    } else {
        j--;
    }
} while(i < j);
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Essentially unchanged, modulo relaxations in design strategies, and 
new language features.
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5. Implementation
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Still need to write tests, and turn examples into tests.

- JUnit [Demo, see also 
https://www.jetbrains.com/help/idea/junit.html#intellij; use 
org.junit.jupiter:junit-jupiter:5.9.0 or higher]
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6. Tests
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https://www.jetbrains.com/help/idea/junit.html#intellij


Files

Input/Output – Part 3

Making things actually useful
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Many things in computing are 
about the right files with the right 
content being in the right place.
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File file = new File(“myFile.txt”);

File file = new File(“.”);

File file = new File(“../parentFile.bla”);

30

Exploring the File System
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java.io.File

A text file in the folder where your program is executed

The folder where your program is executed

Some file in the folder above where your program is executed
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file.exists() – a boolean, true iff the file/directory exists

file.isDirectory() – a boolean, true iff the path specifies a directory

file.isFile() – a boolean, true iff the path specifies a “normal” file

file.getParentFile() – a File, representing the parent directory of the file

file.listFiles() – a File[], representing all the files contained in a directory

file.mkdir() – creates a directory at the path represented by the file

file.mkdirs() – like mkdir, but also creates all necessary parent dirs

31

java.io.File
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Short for “if and only if”
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try(var reader = new BufferedReader(new FileReader(file))) {

   for(String line = reader.readLine(); line != null; 
              line = reader.readLine()) {

 … [do something with line] …

   } 

} catch(Exception e) {

  throw new RuntimeException(e);

}
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Reading (text) Files
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Java’s mechanism for error handling forces you to handle some potential
errors (warnings will say something about “unhandled exceptions”).
For now, this code just says that in those cases, we want to crash the program.

readLine returns null when 
the reader has reached the 
end of a file.
Since files have finite size, 
this terminates.
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try(var writer = new BufferedWriter(new FileWriter(file))) {

   … writer.write(“Hello”); …

 writer.newLine(); …
   writer.write(“World\n”);

} catch(Exception e) {

  throw new RuntimeException(e);

}
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Writing (text) Files
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Two alternative ways of adding 
newlines to your text. Stick to one of 
them.
writer.newLine() may adjust to 
your Operating System. On Windows, 
newlines are traditionally “\r\n”, 
though it can also deal with “\n”.

Putting a reader/writer in such a block ensures that the file is closed
when you are done with it or an error occurs. That’s very useful!
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Write a program for yourself that helps you keep your notebook.yml .

For example, it could work such that you can run it with:
java Notebook start “Part 2” “implementing tree for part 2”

at the start of your session, and with:
java Notebook end

at the end of your session. The program would automatically add the 
relevant session timestamps, comment, and add the corresponding 
minutes to the “Part 2” entry.
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Practice (at home)
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