
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

class Person {
 String firstName;
 String lastName;
 Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 String getFullName() {
 return firstName + “ “ + lastName;
 }
}

2

Recap + Definitions: Classes

26/03/2025School of Computing | COMP1110/6710 2025 S1

class name

Fields

Constructor

(instance)
Method

Members

More on
Methods
Every reference value has methods

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Things we’ll cover in this course:
“hello”.equals(“world”)

  Equals(“hello”, “world”)

new HashMap<>().toString()

  ToString(new HashMap<>())

CurrentDate().getHashCode()

4

Any reference value

26/03/2025School of Computing | COMP1110/6710 2025 S1

Things we likely won’t cover:
“hello”.getClass()

“hello”.notify()

“hello”.notifyAll()

“hello”.wait()

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Java:
Concatenate(“hello”, “world”)

SubString(“hello”, 2, 4)

Contains(“hello”, “ell”)

Replace(“ell”, “ih”, “hello”)

Length(“hello”)

GetCharAt(“hello”, 1)

…

Strings

Java:
“hello”.concat(“world”)

“hello”.substring(2, 4)

“hello”.contains(“ell”)

“hello”.replace(“ell”, “ih”)

“hello”.length()

“hello”.charAt(1)

…

See also https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/String.html

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Remember function.apply(…) ? predicate.test(…) ?

Turns out those are method calls on function objects.

6

Lambdas/Function References

26/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

[expression] . [method-name] ([expression] …)

 “receiver” other arguments

becomes “this” in method code

For an “instance” method call, you always need a receiver.

What if you don’t have one?

7

Method Calls

26/03/2025School of Computing | COMP1110/6710 2025 S1

Static
Members
Class members of which there is only one copy

- No different values for different objects

8 26/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

class Bean {

 int number;

 static int counter;

 Bean() {

 number = counter++;

 }

}

Static Fields

A single field shared by all Beans

Seen with for-loops before. Increases variable by 1,
returns old value from before increase.

Access from outside the class:
Bean.counter

In general:
[class name] . [static field name]

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Static Methods
Essentially global functions, but grouped into a class

Functional Java:
StringToInt(“24”)

StringToDouble(“5.2”)

…

Sin(0.5)

Round(0.5)

RoundInt(0.5)

…

Java:
Integer.parseInt(“24”)

Double.parseDouble(“5.2”)

…

Math.sin(0.5)

Math.round(0.5)

Math.toIntExact(Math.round(0.5))

…

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

[import statements go here]

public class MyClass {

 public static void main(String[] args) {

 System.out.println(“Hello World!”);

 }

}

11

Public Static Void Main

26/03/2025School of Computing | COMP1110/6710 2025 S1

Or: main methods in Java

No “this” available inside a static method!

In a file called “MyClass.java”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

[import statements go here]

public class MyClass {

 public static void main(String[] args) {

 System.out.println(“Hello World!”);

 }

}

12

Public Static Void Main

26/03/2025School of Computing | COMP1110/6710 2025 S1

Or: main methods in Java

A class

In a file called “MyClass.java”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

[import statements go here]

public class MyClass {

 public static void main(String[] args) {

 System.out.println(“Hello World!”);

 }

}

13

Public Static Void Main

26/03/2025School of Computing | COMP1110/6710 2025 S1

Or: main methods in Java

A static field access (to a PrintStream)

In a file called “MyClass.java”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

[import statements go here]

public class MyClass {

 public static void main(String[] args) {

 System.out.println(“Hello World!”);

 }

}

14

Public Static Void Main

26/03/2025School of Computing | COMP1110/6710 2025 S1

Or: main methods in Java

An instance method call

In a file called “MyClass.java”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

--enable-preview does several things:

- Wrap everything in a class named like the file

- Enable instance main methods (so main does not have to be static)

- Enable main methods without String[] args

- Automatically import a number of standard libraries

- Add some special standard libraries for println, print, and readln

15

Wait – how did this work before?

26/03/2025School of Computing | COMP1110/6710 2025 S1

FYI: https://openjdk.org/jeps/477

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

void main() {

 println(sum(1, 2));

}

int sum(int a, int b) {

 return a + b;

}

16

Wait – how did this work before?

26/03/2025School of Computing | COMP1110/6710 2025 S1

FYI: https://openjdk.org/jeps/477

Distinction-Level Content

import static java.io.IO.*;
public class Test {
 public static void main(String[] args) {
 new Test().main();
 }
 void main() {
 println(sum(1, 2));
 }
 int sum(int a, int b) {
 return a + b;
 }
}

If file is called “Test.java”

The Design
Recipe
Adjustments for Classes

17 26/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

For the purposes of this step, for now, classes are essentially records,

with the following adjustments:

- @param annotations go the the constructor(s)

- Each field will still need an interpretation on its own.

The template is like a record template, i.e. essentially a list of fields.

As with records, this may become more interesting with recursion.

1. Problem Analysis and Data Design

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

/** Represents a monotonically increasing counter.
 * Examples: Counter(5), Counter(10532)
 * @implSpec Invariant: the counter value only ever
 * increases.
 */
class Counter {
 /** The current value of the counter >= 0 */
 int counterValue;
 /**
 * Creates a new Counter
 * @param startValue – the starting value of the counter >= 0
 */
 Counter(int startValue) {
 counterValue = startValue;
 }
}

1. Problem Analysis and Data Design

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Same as for functions, for all of

- (instance) methods

- Static methods

- Constructors

Note: constructors don’t have an @return spec.

Particularly important: effects, pre/postconditions, invariants

20

2. Purpose Statement & Signature

26/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Same as for functions, for all of

- (instance) methods

- Static methods

- Constructors

Note: constructors that just assign fields directly from arguments don’t
need examples.

21

3. Examples

26/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Same as before, but you may now nest case distinctions (to a
reasonable degree. Don’t make your code too complicated – create
helper functions!).

You also do not have to include return statements in branches. You may
continue after an if-statement, and omit the else-branch.

Finally, a new Design Strategy: iteration

22

4. Design Strategy

26/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Similar to Case Distinction, but more important. If you are doing both,
call the Design Strategy “Iteration”.

Iteration allows you to use loops (for/enhanced for/while/do-while).

Iteration may be nested (again, to a reasonable degree), and multiple
loops can follow each other (yet again, to a reasonable degree).

IMPORTANT: each loop needs a comment on why it should terminate
(where applicable)

23

4. Design Strategy: Iteration

26/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

// i is not assigned within body,

// but increased towards end

// condition at every iteration

for(int i=0; i<10; i++) {

 …

}

24

4. Design Strategy: Iteration

26/03/2025School of Computing | COMP1110/6710 2025 S1

// iterating over finite-size data

// structure

for(String name : names) {

 …

}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

// termination upon user input

while(true) {

 if(readln().equals(“q”)) {

 break;

 }

}

25

4. Design Strategy: Iteration

26/03/2025School of Computing | COMP1110/6710 2025 S1

// integer bounds are always
// moving closer together
do {
 …
 if(…) {
 i++;
 } else {
 j--;
 }
} while(i < j);

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Essentially unchanged, modulo relaxations in design strategies, and
new language features.

26

5. Implementation

26/03/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Still need to write tests, and turn examples into tests.

- JUnit [Demo, see also
https://www.jetbrains.com/help/idea/junit.html#intellij; use
org.junit.jupiter:junit-jupiter:5.9.0 or higher]

27

6. Tests

26/03/2025School of Computing | COMP1110/6710 2025 S1

https://www.jetbrains.com/help/idea/junit.html#intellij

Files

Input/Output – Part 3

Making things actually useful

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

29 26/03/2025

Many things in computing are
about the right files with the right
content being in the right place.

School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

File file = new File(“myFile.txt”);

File file = new File(“.”);

File file = new File(“../parentFile.bla”);

30

Exploring the File System

26/03/2025School of Computing | COMP1110/6710 2025 S1

java.io.File

A text file in the folder where your program is executed

The folder where your program is executed

Some file in the folder above where your program is executed

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

file.exists() – a boolean, true iff the file/directory exists

file.isDirectory() – a boolean, true iff the path specifies a directory

file.isFile() – a boolean, true iff the path specifies a “normal” file

file.getParentFile() – a File, representing the parent directory of the file

file.listFiles() – a File[], representing all the files contained in a directory

file.mkdir() – creates a directory at the path represented by the file

file.mkdirs() – like mkdir, but also creates all necessary parent dirs

31

java.io.File

26/03/2025School of Computing | COMP1110/6710 2025 S1

Short for “if and only if”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

try(var reader = new BufferedReader(new FileReader(file))) {

 for(String line = reader.readLine(); line != null;
 line = reader.readLine()) {

 … [do something with line] …

 }

} catch(Exception e) {

 throw new RuntimeException(e);

}

32

Reading (text) Files

26/03/2025School of Computing | COMP1110/6710 2025 S1

Java’s mechanism for error handling forces you to handle some potential
errors (warnings will say something about “unhandled exceptions”).
For now, this code just says that in those cases, we want to crash the program.

readLine returns null when
the reader has reached the
end of a file.
Since files have finite size,
this terminates.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

try(var writer = new BufferedWriter(new FileWriter(file))) {

 … writer.write(“Hello”); …

 writer.newLine(); …
 writer.write(“World\n”);

} catch(Exception e) {

 throw new RuntimeException(e);

}

33

Writing (text) Files

26/03/2025School of Computing | COMP1110/6710 2025 S1

Two alternative ways of adding
newlines to your text. Stick to one of
them.
writer.newLine() may adjust to
your Operating System. On Windows,
newlines are traditionally “\r\n”,
though it can also deal with “\n”.

Putting a reader/writer in such a block ensures that the file is closed
when you are done with it or an error occurs. That’s very useful!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Write a program for yourself that helps you keep your notebook.yml .

For example, it could work such that you can run it with:
java Notebook start “Part 2” “implementing tree for part 2”

at the start of your session, and with:
java Notebook end

at the end of your session. The program would automatically add the
relevant session timestamps, comment, and add the corresponding
minutes to the “Part 2” entry.

34

Practice (at home)

25/03/2025School of Computing | COMP1110/6710 2025 S1

	1A
	Slide 1
	Slide 2: Recap + Definitions: Classes
	Slide 3: More on Methods
	Slide 4: Any reference value
	Slide 5: Strings
	Slide 6: Lambdas/Function References
	Slide 7: Method Calls
	Slide 8: Static Members
	Slide 9: Static Fields
	Slide 10: Static Methods
	Slide 11: Public Static Void Main
	Slide 12: Public Static Void Main
	Slide 13: Public Static Void Main
	Slide 14: Public Static Void Main
	Slide 15: Wait – how did this work before?
	Slide 16: Wait – how did this work before?
	Slide 17: The Design Recipe
	Slide 18: 1. Problem Analysis and Data Design
	Slide 19: 1. Problem Analysis and Data Design
	Slide 20: 2. Purpose Statement & Signature
	Slide 21: 3. Examples
	Slide 22: 4. Design Strategy
	Slide 23: 4. Design Strategy: Iteration
	Slide 24: 4. Design Strategy: Iteration
	Slide 25: 4. Design Strategy: Iteration
	Slide 26: 5. Implementation
	Slide 27: 6. Tests
	Slide 28: Files
	Slide 29
	Slide 30: Exploring the File System
	Slide 31: java.io.File
	Slide 32: Reading (text) Files
	Slide 33: Writing (text) Files
	Slide 34: Practice (at home)

