P —

r;l
I
:

i
u
!
:
|

Sitructured Pregramming ¢&

)
N
D

COM P1HO/1

Recap + Definitions: Classes

(instance)
\ Method

¥

School of Computing | COMP1110/6710 2025 St

g Fields {

Members < Constructor <

class name

class Person {

¥

y
¥

String firstName;
String lastName;

Person(String firstName, String lastName)

this.firstName = firstName;

this.lastName = lastName;

’String getFullName() {

return firstName + “ “ + lastName;

26/03/2025 TEQSA PROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

More on
Methods

Every reference value has methods

-] Australian
= National

)

==~ University

Any reference value

Things we’ll cover in this course:
“hello”.equals(“world”)
& Equals(“hello”, “world”)

new HashMap<>().toString()
< ToString(new HashMap<>())

CurrentDate().getHashCode()

4 School of Computing | COMP1110/6710 2025 St

Things we likely won’t cover:

“hello”.getClass()
“hello”.notify()
“hello”.notifyAll()
“hello”.wait()

26/03/2025 ~ TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

..

Strings

Functional Java:
Concatenate(“hello”, “world”)
SubString(“hello”, 2, 4)
Contains(“hello”, “ell”)
Replace(“ell”, “ih”, “hello”)
Length(“hello™)
GetCharAt(“hello”, 1)

Java:

“hello”.
“hello”.
“hello”.
“hello”.
“hello”.
“hello”.

concat(“world”)
substring(2, 4)
contains(“ell”)
replace(“ell”, “ih”)
length()

charAt(1)

See also https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/String.html

RRR
OOOOOOOOOOOOOOOOOOOOOOOO

Lambdas/Function References

Remember function.apply(..) ? predicate.test(..) ?

Turns out those are method calls on function objects.

6 School of Computing | COMP1110/6710 2025 S1 26/03/2025 gER?CSOASPPRRCz)\(/”IJDEERRI?J:OPDRE\:I]OZ(ggg AAAAAAAAAAAAAAAAAAAAAA

Method Calls

[expression] . [method-name] ([expression]...)
“receiver” other arguments
becomes “this” in method code

For an “instance” method call, you always need a receiver.
What if you don’t have one?

ine | COMPI110/67102025s1 ... 26/03/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
7 School of Computing | COMP1110/6710 2025 S1 26/03/2025 L e e

Static
Members

Class members of which there is only one copy
- No different values for different objects

Australian
National
University

8chool of Computing | COMP1110/6710 2025 St 26/03/2025

Sta t | C F | e ld S Access from outside the class:

Bean.counter

In general:

class Bean { [class name] . [static field name]

int number;

static int counter; A singlefield shared by all Beans
Bean() {

number = counter++;

Seen with for-loops before. Increases variable by 1,
} returns old value from before increase.

A

)

CRICOS PROVIDER CbDE OOOOOOO

Static Methods

Essentially global functions, but grouped into a class

Functional Java:
StringToInt(“24>)
StringToDouble(“5.2”)

Sin(0.5)
Round(0.5)
RoundInt(0.5)

Java:
Integer.parselInt(“24”)
Double.parseDouble(“5.2”)

Math.sin(@.5)
Math.round(0.5)
Math.toIntExact(Math.round(0.5))

)ﬁ}) =

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Public Static Void Main

Or: main methods in Java

[import statements go here] In a file called “MyClass.java”

public class MyClass {
public static void main(String[] args) {
System.out.println(“Hello World!”);

No “this” available inside a static method!

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
n School of Computing | COMP1110/6710 2025 S1 26/03/2025 (T:ERIC;SPPRR(;/V‘FSERRIQOPDRE\:/ AAAAAAAAAAAAAAAAAAAAAA

Public Static Void Main

Or: main methods in Java

[import statements go here] In a file called “MyClass.java”

public class MyClass {
public static void main(String[] args) {
System.out.println(“Hello World!”);

} Aclass

ing | COMP1110/67102025S1 o 926/03/2025 0 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
12 School of Computing | COMP1110/6710 2025 St 26/03/2025 e &

Public Static Void Main

Or: main methods in Java

[import statements go here] In a file called “MyClass.java”

public class MyClass {
public static void main(String[] args) {
System.out.println(“Hello World!”);

} A static field access (to a PrintStream)

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
13 School of Computing | COMP1110/6710 2025 S1 26/03/2025 gERICOASPPRROV\/”IJEEERRI?:OPDRE\:I AAAAAAAAAAAAAAAAAAAAAAAA

Public Static Void Main

Or: main methods in Java

[import statements go here] In a file called “MyClass.java”

public class MyClass {
public static void main(String[] args) {
System.out.println(“Hello World!”);

} Aninstance method call

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
14 School of Computing | COMP1110/6710 2025 S1 26/03/2025 EERICL?SPPRROVV‘FSERR%OPDRE\:/ AAAAAAAAAAAAAAAAAAAAAA

Wait - how did this work before?

Distinction-Level Content

--enable-preview does several things:

Wrap everything in a class named like the file

Enable instance main methods (so main does not have to be static)
Enable main methods without String[] args

Automatically import a number of standard libraries

Add some special standard libraries for println, print, and readln

FYI: https://openjdk.org/jeps/477

15

)ﬂ}) 2]

School of Computing | COMP1110/6710 2025 St 26/03/2025

Wait - how did this work before?

Distinction-Level Content

If file is called “Test.java” import static java.io.IO.*;

public class Test {

void main() { public static void main(String[] args) {

println(sum(1, 2)); \ new Test().main();
} - void main() {
int sum(int a, int b) { } printin(sum(1, 2));
return a + b; int sum(int a, int b) {
} return a + b;
}
}

FYI: https://openjdk.org/jeps/477

16 School of Computing | COMP1110/6710 2025 S1 26/03/2025

)ﬂ}) =

The Design
Recipe

Adjustments for Classes

=/ Australian
= National

\

==~ University

$thool of Computing | COMP1110/6710 2025 St 26/03/2025

1. Problem Analysis and Data Design

For the purposes of this step, for now, classes are essentially records,
with the following adjustments:

- @param annotations go the the constructor(s)

- Each field will still need an interpretation on its own.

The template is like a record template, i.e. essentially a list of fields.
As with records, this may become more interesting with recursion.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

1. Problem Analysis and Data Design

/** Represents a monotonically increasing counter.

* Examples: Counter(5), Counter(10532)

* @implSpec Invariant: the counter value only ever
* increases.

*/

class Counter {

/** The current value of the counter >= 0 */

int counterValue;
/**

* Creates a new Counter

* @param startValue - the starting value of the counter >= ©

*/
Counter(int startValue) {
counterValue = startValue;

}

CRICOS PROVIDER CODE: 00120C

2. Purpose Statement & Signature

Same as for functions, for all of

- (instance) methods

- Static methods

- Constructors

Note: constructors don’t have an @return spec.

Particularly important: effects, pre/postconditions, invariants

ine | COMP1110/6710 2025 <1 o 98/03/2025 0 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
20 School of Computing | COMP1110/6710 2025 ST 26/03/2026 O ROVIDER GoDE - 00120C

3. Examples

Same as for functions, for all of
- (instance) methods

- Static methods

- Constructors

Note: constructors that just assign fields directly from arguments don’t
need examples.

i TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY))
21 School of Computing | COMP1110/6710 2025 St 26/03/2025 L e e

4, Design Strategy

Same as before, but you may now nest case distinctions (to a
reasonable degree. Don’t make your code too complicated - create
helper functions!).

You also do not have to include return statements in branches. You may
continue after an if-statement, and omit the else-branch.

Finally, a new Design Strategy: iteration

i TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
22 School of Computing | COMP1110/6710 2025 S1 26/03/2025 L e e

4, Design Strategy: Iteration

Similar to Case Distinction, but more important. If you are doing both,
call the Design Strategy “lteration”.

lteration allows you to use loops (for/enhanced for/while/do-while).

lteration may be nested (again, to a reasonable degree), and multiple
loops can follow each other (yet again, to a reasonable degree).

IMPORTANT: each loop needs a comment on why it should terminate
(where applicable)

ine | COMPI110/67102025s1 ... 26/03/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
23 School of Computing | COMP1110/6710 2025 S1 26/03/2025 L e e

4, Design Strategy: lteration

//1is not assigned within body, // iterating over finite-size data
// but increased towards end // structure
// condition at every iteration for(String name : names) {

for(int i=0; i<10; i++) {

; QSA PRO : PRV12002 (AUSTRALIAN UNIVERSITY)
24 School of Computing | COMP1110/6710 2025 S1 26/03/2025 éilcgsPPRRo\CFEEERRIgOPDREY AAAAAAAAAAAAAAAAAAAAAAA

4, Design Strategy: lteration

// termination upon user input
while(true) {
if(readln().equals(“q”)) {
break:

25 School of Computing | COMP1110/6710 2025 S1

// integer bounds are always
// moving closer together
do {

(.0 {
I++;
}else{
J=
}
} while(i <j);

2 2025 TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)
6/03/2025 CRICOS PROVIDER CODE: 00120C

26

5. Implementation

Essentially unchanged, modulo relaxations in design strategies, and

new language features.

School of Computing | COMP1110/6710 2025 St

26/03/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

6. Tests

Still need to write tests, and turn examples into tests.

- JUnit [Demo, see also
https://www.jetbrains.com/help/idea/junit.html#intellij; use
org.junit.jupiter:junit-jupiter:5.9.0 or higher]

; QSA PRO! : PRV12002 (i
27 School of Computing | COMP1110/6710 2025 S1 26/03/2025 EERIC;SPPRROVV‘FSERRIEOPDRE\:/ AAAAAAAAAAAAAAAAAAAAAAAAAAA

https://www.jetbrains.com/help/idea/junit.html#intellij

Files

Input/Output - Part 3
Making things actually useful

=] Australian
= National

N

==~ University

Many things in computing are
about the right files with the right
content being in the right place.

CRICOS PROVIDER CbDE UUUUUUU

Exploring the File System

java.io.File

File file = new File(“*myFile.txt”);

A text file in the folder where your program is executed

File file = new File(“.”);

The folder where your program is executed

File file = new File(“../parentFile.bla”);

Some file in the folder above where your program is executed

; : PRV12002 (AUSTRALIAN UNIVERSITY)
30 School of Computing | COMP1110/67102025 S1 26/03/2025 gER?CSC?SPPRFSJ\(/‘FDEERRIgOPDRE\:I AAAAAAAAAAAAAAAAAAAAAAA

java.io.File

Short for “if and only if”
file.exists() — a boolean, true iff the file/directory exists
file.isDirectory() - a boolean, true iff the path specifies a directory
file.isFile() - a boolean, true iff the path specifies a “normal” file
file.getParentFile() - a File, representing the parent directory of the file
file.listFiles() — a File[], representing all the files contained in a directory
file.mkdir() - creates a directory at the path represented by the file
file.mkdirs() - like mkdir, but also creates all necessary parent dirs

ine | COMPI110/67102025s1 ... 26/03/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
31 School of Computing | COMP1110/6710 2025 S1 26/03/2025 L e e

Reading (text) Files

try(var reader = new BufferedReader(new FileReader(file))) {

for(String line = reader.readlLine(); line != null;
line = reader.readline()) { .. qline returns null when
.. [do something with line] .. the reader has reached the

} end of a file.

Since files have finite size,

catch(Exception e
} (P) { this terminates.

throw new RuntimeException(e);

}

Java’s mechanism for error handling forces you to handle some potential
errors (warnings will say something about “unhandled exceptions”).

For now, this code just says that in those cases, we want to crash the program.

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
32 School of Computing | COMP1110/6710 2025 S1 26/03/2025 (T:ERIC;SPPRRO\CFDEERRIQOPDRE\:/ AAAAAAAAAAAAAAAAAAAAAAAA

Writing (text) Files

Putting a reader/writer in such a block ensures that the file is closed
when you are done with it or an error occurs. That’s very useful!

try(var writer = new BufferedWriter(new FileWriter(file))) {
. writer.write(“Hello”); ..

writer.newlLine(); .. Two alternative ways of adding
writer.write(“World\n”); newlines to your text. Stick to one of
} catch(Exception e) { them.

writer.newLine() may adjust to
your Operating System. On Windows,
} newlines are traditionally “\r\n”,
though it can also deal with “\n”.

throw new RuntimeException(e);

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
33 School of Computing | COMP1110/6710 2025 S1 26/03/2025 (T:ERIC;SPPRRO\CFDEERRIQOPDRE\:/ AAAAAAAAAAAAAAAAAAAAAAA

Practice (at home)

Write a program for yourself that helps you keep your notebook.yml.
For example, it could work such that you can run it with:

java Notebook start “Part 2” “implementing tree for part 2”
at the start of your session, and with:

java Notebook end

at the end of your session. The program would automatically add the
relevant session timestamps, comment, and add the corresponding
minutes to the “Part 2” entry.

34 School of Computing | COMP1110/6710 2025 St 25/03/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

	1A
	Slide 1
	Slide 2: Recap + Definitions: Classes
	Slide 3: More on Methods
	Slide 4: Any reference value
	Slide 5: Strings
	Slide 6: Lambdas/Function References
	Slide 7: Method Calls
	Slide 8: Static Members
	Slide 9: Static Fields
	Slide 10: Static Methods
	Slide 11: Public Static Void Main
	Slide 12: Public Static Void Main
	Slide 13: Public Static Void Main
	Slide 14: Public Static Void Main
	Slide 15: Wait – how did this work before?
	Slide 16: Wait – how did this work before?
	Slide 17: The Design Recipe
	Slide 18: 1. Problem Analysis and Data Design
	Slide 19: 1. Problem Analysis and Data Design
	Slide 20: 2. Purpose Statement & Signature
	Slide 21: 3. Examples
	Slide 22: 4. Design Strategy
	Slide 23: 4. Design Strategy: Iteration
	Slide 24: 4. Design Strategy: Iteration
	Slide 25: 4. Design Strategy: Iteration
	Slide 26: 5. Implementation
	Slide 27: 6. Tests
	Slide 28: Files
	Slide 29
	Slide 30: Exploring the File System
	Slide 31: java.io.File
	Slide 32: Reading (text) Files
	Slide 33: Writing (text) Files
	Slide 34: Practice (at home)

