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Today:
Core OO
That means: Subtyping, Dynamic Dispatch, Overriding

Also: Inheritance, Access Control
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- Working in teams, collaborating with other programmers, other 
teams

- Software needs to be maintained: fixing bugs, adding features, 
adapting to changes in libraries/environment

- DRY on larger scale – once written, code should be reusable for other 
purposes

➔ Software should consist of small components that
 can easily be swapped out and reused elsewhere.

Real Software Concerns
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A set of possible values!

What’s a Type?
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1337

-42

0

6710

-90001

…

int

“Hello”

Person(“Frank”, 55)

Role.ACADEMIC

true

OrangeBasket(3)

[1, 2, 3]
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Java’s int: any integer between −231 and 231 − 1 (~ -2 billion to +2 billion)

/** A PosInt is an int that is greater than 0 */

➔ Any integer between 1 and 231 − 1 , but only as part of a human 
signature. Java does not check this part.
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Remember: Humans and Machines
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Function Types
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x-> x + 1 

x -> 5

x -> x > 5? x/5 : x

x - > x * x

x -> x

…

Function<Integer, Integer> /** 
 * A MonoIntFun is a
 * Function<Integer,Integer>,
 * where, for any MonoIntFun f
 * and any two ints x, y, if
 * x >= y, then f(x) >= f(y)
 */
   

…

MonoIntFun
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Liskov Substitution Principle:

A type S is a subtype of a type T
if any value of type S can be used 
wherever any value of type T is 
expected, and it behaves according
to T’s specification.

➔ “Behavioral Subtyping”
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Barbara Liskov
Turing Award 2008
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- Every PosInt is also an int, hence PosInt is a subtype of int.

- Similarly, every MonoIntFun is also a Function<Integer,Integer> …

- In both cases, the reverse is not true.

- String values (e.g. “Hello”) cannot be used where ints are expected

- Conversely, you also could not write 5.length() , hence neither is a 
subtype of the other.
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Behavioral Subtyping Examples
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Behavioral Subtyping Examples
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PosInt

String Function<Integer,Integer>int

MonoIntFun

is subtype of is subtype of

However, in terms of Java types, int = PosInt, and 
MonoIntFun = Function<Integer,Integer>
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We’ve seen a special case before:

sealed interface Shape permits Rectangle, Circle {}

record Rectangle(double w, double h) implements Shape {}

record Circle(double radius) implements Shape {}
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Java Interfaces
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Java’s Main Mechanism for Subtyping
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Java Interfaces
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Java’s Main Mechanism for Subtyping

Rectangle

Circle(1.0)

Circle(5.3)

Circle(102.2)

…

Circle

Shape
Shape

CircleRectangle

is subtype of

“union”. See also HtDC 

Rectangle(2.1,4.3)

Rectangle(5.7,0.4)

Rectangle(1.0, 1.2)

…
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sealed interface Shape permits Rectangle, Circle {}

record Rectangle(double w, double h) implements Shape {}

record Circle(double radius) implements Shape {}

12

Java Interfaces
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Java’s Main Mechanism for Subtyping
Special feature for more functional behaviour:
allows omitting default-case in switch, but relies on knowing all cases

OO Philosophy: Allow extending programs with new classes 
implementing existing interfaces all the time
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interface Shape {}

record Rectangle(double w, double h) implements Shape {}

record Circle(double radius) implements Shape {}

13

Java Interfaces
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Java’s Main Mechanism for Subtyping

Now there can be arbitrarily many 
classes/records implementing ConsList

BUT:
switch(shape) {
    case Rectangle(var w, var h) -> …;
    case Circle(var radius) -> …;
    default -> …; //what goes here???
}

Instead, we now use the space 
between the curly braces!
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interface Shape {

 double getArea();

}
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Java Interfaces
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Java’s Main Mechanism for Subtyping

Interfaces can prescribe arbitrarily many methods
that classes implementing them have to provide.
Interfaces themselves generally do have code for
those methods.
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interface Shape {

    double getArea();

}

class Circle implements Shape {

    double radius;

    Circle(double radius) { this.radius = radius; }

    @Override

    double getArea() { return radius * radius * Math.PI; }

}
15

Java Interfaces
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Java’s Main Mechanism for Subtyping
Implementing or replacing (see next) 
a method in a supertype is called 
“overriding”. Java uses the @Override
annotation to check whether there
actually is something that is being 
overridden.
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interface Shape {

    double getArea();

}

class Rectangle(double w, double h) implements Shape {

    @Override

    double getArea() { return w * h; }

}
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Java Interfaces
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Java’s Main Mechanism for Subtyping

Pro tip: if your fields never have to be changed,
you can also use records, which saves you 
some work in writing constructors.
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double getShapeArea(Shape s) { return s.getArea(); }

void main() {

    System.out.println(getShapeArea(new Rectangle(5,3)));

    System.out.println(getShapeArea(new Circle(3.2)));

}
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Dynamic Dispatch
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How do we know which method to call?

Remember: Objects know themselves. So each individual s knows whether it is
                       a rectangle or a circle or …, and calls the right getArea()
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- Interfaces have no instance fields, and no constructors

- The main point of interfaces is to declare (not implement) methods

- Special features (distinction-level):

- Interfaces can have static fields and methods; for fields, you can 
omit the static keyword

- Interfaces can have “default” implementations for instance methods
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Java Interfaces vs. Classes
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Write once for each method, in interface. Copy to classes/records 
implementing the interface and overriding the method.

Design Strategy is added to actual implementation, not interface.

Examples/tests should go where they fit best – can be with the 
interface to give examples/tests for everything together, or with 
individual classes. There should be at least one example/test per class.

19

Design Recipe
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Where should things go?
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The argument types/pre-conditions of a subtype cannot be more strict 
than those of a supertype. If one of your method implementations 
makes certain assumptions about input data/the overall state, you need 
to state that in the interface.

Similarly, the return type/post-condition must be at least as strong as 
in the interface. You cannot relax any requirements of your signature in 
a subclass – you need to do that in the interface.
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Design Recipe
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Key point: Liskov Substitution Principle



Inheritance

Code Reuse

But only if there is Behavioural Subtyping, 
because Java conflates the two concepts.
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interface User {
 String getName();
}
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Some things get repetitive
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class Academic implements User {
  String name;
  Academic(String name) { … }
  @Override
  String getName() { return name; }
}

class Student implements User {
  String name;
  Student(String name) { … }
  @Override
  String getName() { return name; }
}

class ProfessionalStaff
  implements User {
  String name;
  ProfessionalStaff(String name) { … }
  @Override
  String getName() { return name; }
}
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class User {
  String name;
  User(String name) { … }
  String getName() 
  { return name; }
}
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Some things get repetitive
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class Academic extends User {
  Academic(String name) { 
    super(name);  
 }
}

class Student extends User {
 Student(String name) { 
    super(name);  
  }
}

class ProfessionalStaff extends User {
 ProfessionalStaff(String name) { 
    super(name);  
  }
}

Now a class so we can have instance fields
Keyword for extending
classes is “extends”

Constructor needs to explicitly
call super-constructor with special
keyword “super”, except if there
is a parameter-less constructor
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abstract class User {
  String name;
  User(String name) { … }
  String getName() {
 return name; 
 }
 abstract Maybe<Date> nextSalaryIncrease();
}
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Abstract Classes
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When you can’t implement everything right there

“abstract” methods behave as if specified
in an interface

“abstract” classes allow “abstract” methods
to exist in them, but in turn disallow directly
constructing instances of that class.
I.e. you can’t write new User(“Fabian”)
Need to use a non-abstract subclass
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class Student extends User {
  Date birthday;
  Student(String name, Date birthday) { 
     super(name);
     this.birthday = birthday;
  }
  @Override
  Maybe<Date> nextSalaryIncrease() { 
    return new Nothing<>(); 
  }
}
25

Extending Classes
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A bigger Example

Can add new fields and constructor arguments

Need to initialize new fields after super-constructor call

Overriding works the same as for interfaces
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Things we’ll cover in this course:
“hello”.equals(“world”)

     Equals(“hello”, “world”)

new HashMap<>().toString()

     ToString(new HashMap<>())

CurrentDate().getHashCode()
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The Object Class – Recap:
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Things we likely won’t cover:
“hello”.getClass()

“hello”.notify()

“hello”.notifyAll()

“hello”.wait()

Every reference value ultimately inherits
these from the Object class. Most can be
overridden.
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class User {
  String name;
  User(String name) { … }
  String getName() { return name; }

  @Override
  String toString() { 
    return name + “ / “ + super.toString(); 
 }
}
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Overriding an Existing Method
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Implicitly extends Object

Overrides default implementation from Object

Calls default implementation from superclass,
in this case Object – you do not have to do that.
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- Anything can extend arbitrarily many interfaces

- But only classes can extend classes, and at most one each (by 
default: Object)

28

Java Interfaces vs. Classes, Part 2
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Access Control

To preserve your ability to change things, hide 
everything from others that they don’t explicitly 
need

15/04/202529 School of Computing     |     COMP1110/6710 2025 S1



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Supertypes Already Hide Stuff

class Student extends User {
  Date birthday;
  Student(String name, Date birthday) { 
     super(name);
     this.birthday = birthday;
  }
  @Override
  Maybe<Date> nextSalaryIncrease() { 
    return new Nothing<>(); 
  }
}

Since “birthday” is only introduced here,
anyone looking at this object as a “User”
does not know the field exists.
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public abstract class User {

  public final int id;

  protected String name;

  private static int counter=0;

  protected User(String name) {

   this.name = name;

    this.id = counter++;

  }

  String getName() { return name; }

}
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Visibility Attributes
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public – accessible from anywhere
protected – accessible from subclasses
private – accessible from within the class
[nothing] – accessible from classes within
                      the same folder
final – not technically about visibility, but
             requires field to be set in
             constructor, then disallows
           any changes afterward
             (this is how records work)
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interface A { String getString(); }

class B {

   private String str;

   …

   private class C implements A() {

     String getString() { return str; }

   }

   A getA() { return new C(); }

}
32

Inner Classes
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To get inside access

C is an “inner class”. It can only be
created from within an instance method

of B, and is then associated with that
object, hence it has direct 

access to its fields.
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interface A { String getString(); }

class B {

   private String str;

   …

   public static class D implements A() {

     B b; D(B b) { this.b = b; }

     String getString() { return b.str; }

   }

   A getA() { return new D(this); }

}
33

Static Inner Classes
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To get inside access

D is a “static inner class”. It can be accessed
from anywhere, and is only

logically contained within B.
Given any B, it still has 

access to its private fields. 
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