» Australian
=% National

Programming &S&22 University

110/6 710

Today:
Core OO

That means: Subtyping, Dynamic Dispatch, Overriding

Also: Inheritance, Access Control

=] Australian
= National

)

==~ University

2 School of Computing | COMP1110/6710 2025 S1 15/04/2025

Real Software Concerns

- Working in teams, collaborating with other programmers, other
teams

- Software needs to be maintained: fixing bugs, adding features,
adapting to changes in libraries/environment

- DRY onlarger scale - once written, code should be reusable for other
purposes

-> Software should consist of small components that
can easily be swapped out and reused elsewhere.

RRR
OOOOOOOOOOOOOOOOOOOOOOOO

What's a Type?

A set of possible values!

Role. ACADEMIC

1337
true

42

OrangeBasket(3)

int

6710

-90001

“Hello”

1,2, 3]

Person(“Frank”, 55)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

)ﬂ}) =

Remember: Humans and Machines

Java’s int: any integer between —23! and 23! — 1 (~ -2 billion to +2 billion)

/** A PosInt is an int that is greater than @ */

= Any integer between 1and 23! — 1, but only as part of a human
signature. Java does not check this part.

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERS|
5 School of Computing | COMP1110/6710 2025 S1 15/04/2025 EERlc;sPPRRovv‘FLEERRIgoPDREY AAAAAAAAAAAAAAAAAAAAAAA

Function Types

Function<Integer, Integer> /**
* A MonoIntFun is a
X->X + 1 T * Function<Integer,Integer>,
X ->X * where, for any MonoIntFun f
X ->5 . * and any two ints x, y, if
X-=X"X * x >= vy, then f(x) >= f(y)
*/

X->x>57x/5:x

6 School of Computing | COMP1110/6710 2025 S1

15/04/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVER:

|
CRICOS PROVIDER CODE: 00120C

S|

ITY)

A

0

1 5 0
/ ’L\ \\‘\V\‘\.‘h k\,,‘,‘ ‘:‘\‘\‘m

Barbara Liskov
Turing Award 2008

Liskov Substitution Principle:

A type S is a subtype of a type T
if any value of type S can be used
wherever any value of type T is

expected, and it behaves according
to T's specification.

= “Behavioral Subtyping”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Behavioral Subtyping Examples

- Every PosIntis alsoan int, hence PosInt is a subtype of int.
- Similarly, every MonoIntFunis also a Function<Integer,Integer> ...
- Inboth cases, the reverse is not true.

- Stringvalues (e.g. “Hello”) cannot be used where ints are expected

- Conversely, you also could not write 5.length() , hence neitheris a
subtype of the other.

)ﬁ}) =

ine | COMP1110/6710202?5<1 . 15/04/2025 ¢ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
8 School of Computing | COMP1110/6710 2025 S1 15/04/2025 R OVIDER GopE: - 00120C

Behavioral Subtyping Examples

int String Function<Integer,Integer>
is subtype of IS subtype of
PosInt MonoIntFun

However, in terms of Java types, int = PosInt, and
MonoIntFun = Function<Integer,Integer>

9 School of Computing | COMP1110/67102025 S1 15/04/2025 (T:ER?CS;SPPR'%‘CFDEER;ngDRE‘:/LZ&% AAAAAAAAAAAAAAAAAAAAAA

Java Interfaces
Java’s Main Mechanism for Subtyping

We've seen a special case before:
sealed interface Shape permits Rectangle, Circle {}

record Rectangle(double w, double h) implements Shape {}
record Circle(double radius) implements Shape {}

ine | COMPI10/671020251 ... 1B/04/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
10 School of Computing | COMP1110/6710 2025 S1 15/04/2026 L e o2

Java Interfaces

Java’s Main Mechanism for Subtyping

Shape
Circle
Rectangle(1.0, 1.2) Circle(1.0)
Rectangle(2.1,4.3) Circle(5.3)
Circle(102.2)

Rectangle(5.7,0.4)

15/04/2025

School of Computing | COMP1110/6710 2025 S1

Shape

is sUbtypenof

Rectangle C(Circle

“union”. See also HtDC

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Java Interfaces
Java’s Main Mechanism for Subtyping

Special feature for more functional behaviour:
allows omitting default-case in switch, but relies on knowing all cases

sealed interface Shape permits Rectangle, Circle {}
record Rectangle(double w, double h) implements Shape {}
record Circle(double radius) implements Shape {}

OO Philosophy: Allow extending programs with new classes
implementing existing interfaces all the time

ine | COMP1110/6710202?5SS1 ... 15/04/2025 @ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
12 School of Computing | COMP1110/6710 2025 St 15/04/2025 e &

)ﬁ}) =

Java Interfaces
Java’s Main Mechanism for Subtyping

Now there can be arbitrarily many
classes/records implementing ConsList
Instead, we now use the space

between the curly braces!

interface Shape {}
record Rect BUT:‘ ape {}

record Circ|switch(s
case
case
defa

ar w, var h) -> .;
radius) -> ..;

ine | COMPI110/67102025s1 . {5/04/2025 TEQSAPROVIDERID : PRVI2002 (AUSTRALIAN UNIVERSITY)
13 School of Computing | COMP1110/6710 2025 S1 15/04/2025 CRICOS PROVIDER CODE: 00120C

Java Interfaces
Java’s Main Mechanism for Subtyping

Interfaces can prescribe arbitrarily many methods
that classes implementing them have to provide.
double getArea(); Interfaces themselves generally do have code for

} those methods.

interface Shape {

15/04/2025 TEQSA PROVIDERID: : PRV12002 (AUSTRALIAN UNIVERSITY)

14 School of Computing | COMP1110/6710 2025 S1 CRICOS PROVIDER CODE: 00120C

Java Interfaces
Java’s Main Mechanism for Subtyping

Implementing or replacing (see next)
a method in a supertype is called

double getArea(); “overriding”. Java uses the @Override
} annotation to check whether there
actually is something that is being
overridden.

interface Shape {

class Circle implements Shape {
double radius;
Circle(double radius) { this.radius = radius; }
@Override
double getArea() { return radius * radius * Math.PI; }

...

ine | COMP1110/6710202?5<1 o 15/04/2025 ¢ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
15 School of Computing | COMP1110/6710 2025 ST 15/04/2025 R OVIDER GopE: - 00120C

Java Interfaces
Java’s Main Mechanism for Subtyping

interface Shape { Pro tip: if your fields never have to be changed,

double getArea(); you can also use records, which saves you
} some work in writing constructors.
class Rectangle(double w, double h) implements Shape {
@Override

double getArea() { return w * h; }

...

ine | COMP1110/6710202?5<1 o 15/04/2025 ¢ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
16 School of Computing | COMP1110/6710 2025 ST 15/04/2025 R OVIDER GopE: - 00120C

Dynamic Dispatch

How do we know which method to call?

double getShapeArea(Shape s) { return s.getArea(); }

void main() {
System.out.println(getShapeArea(new Rectangle(5,3)));

System.out.println(getShapeArea(new Circle(3.2)));
}

Remember: Objects know themselves. So each individual s knows whether it is
arectangle or a circle or ..., and calls the right getArea()

15/04/2025 ~ TEQSA PROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY)
oooooooooooooooooooooooo

17 School of Computing | COMP1110/6710 2025 St

- Interfaces have no instance fields, and no constructors
- The main point of interfaces is to declare (not implement) methods

Special features (distinction-level):
Interfaces can have static fields and methods; for fields, you can

omit the static keyword

Interfaces can have “default” implementations for instance methods

18 School of Computing | COMP1110/6710 2025 St 15/04/2025 ~ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

Desigh Recipe

Where should things go?

Write once for each method, in interface. Copy to classes/records
implementing the interface and overriding the method.

Design Strategy is added to actual implementation, not interface.

Examples/tests should go where they fit best - can be with the
interface to give examples/tests for everything together, or with
individual classes. There should be at least one example/test per class.

19 School of Computing | COMP1110/6710 2025 S1 15/04/2025 ~ TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

Desigh Recipe
Key point: Liskov Substitution Principle

The argument types/pre-conditions of a subtype cannot be more strict
than those of a supertype. If one of your method implementations
makes certain assumptions about input data/the overall state, you need
to state that in the interface.

Similarly, the return type/post-condition must be at least as strong as
in the interface. You cannot relax any requirements of your signature in
a subclass - you need to do that in the interface.

15/04/2025 ~ TEQSA PROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY)

20 School of Computing | COMP1110/6710202581 15042025 T e

Inheritance

Code Reuse

But only if there is Behavioural Subtyping,
because Java conflates the two concepts.

“| Australian
~—=/ National
==~ University

Some things get repetitive

interface User { class Student implements User {
. . String name;
String getName(); Student(String name) { .. }
} @Override
String getName() { return name; }
}
class Academic implements User { class ProfessionalStaff
String name; implements User {
Academic(String name) { .. } String name;
@Override ProfessionalStaff(String name) { .. }
String getName() { return name; } @Override
} String getName() { return name; }

i TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY))
22 School of Computing | COMP1110/6710 2025 St 15/04/2026 TEQSAPROVDER IO o e

Some things get repetitive

Keyword for extending
Now a class so we can have instance fields
class User {

classes is “extends”
class Student extends User {
String name; Student(String name) {
super (name) ;
User{(String name) { .. }
String getName()

{ return name; }

} Constructor needs to explicitly
call super-constructor with special
) keyword “super”, except if there
IS a parameter-less constructor
class Academic extends User { class ProfessionalStaff extends User {
Academic(String name) { ProfessionalStaff(String name) {
super(name); super(name);

} }

}

School of Computing | COMP1110/6710 2025 S1

15/04/2025

CRICOS PROVIDER CODE: 00120C

Abstract Classes
When you can’t implement everything right there

abstract class User { “abstract” classes allow “abstract” methods
String name; to exist in them, but in turn disallow directly

constructing instances of that class.

l.e. you can’t write new User(“Fabian™)

Need to use a non-abstract subclass

User(String name) { .. }
String getName() {
return name;

}

abstract Maybe<Date> nextSalaryIncrease();

} “abstract” methods behave as if specified
In an interface

] QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
24 School of Computing | COMP1110/6710 2025 S1 15/04/2025 EERICL?SPPRROVV‘FSERR%OPDRE‘:/ AAAAAAAAAAAAAAAAAAAAAAAA

Extending Classes
A bigger Example

class Student extends User {
Date birthday; Canaddnew fields and constructor arguments

Student(String name, Date birthday) {
super(name);

this.birthday = birthday;
} Need to initialize new fields after super-constructor call

@Override
Maybe<Date> nextSalaryIncrease() f{
return new Nothing<>();
g<>(); Overriding works the same as for interfaces

EEEEEEEEEEEEEEE : PRV12002 (AUSTRALIAN UNIVERSITY)

15/04/2025
CCCCCCCCCCCCCCCCCC £ 00120C

...

25 School of Computing | COMP1110/6710 2025 St

The Object Class - Recap:

Things we'll cover in this course: Things we likely won’t cover:
“hello”.equals(“world”) “hello”.getClass()
& Equals(“hello”, “world”) “hello”.notify()
“hello”.notifyAll()

new HashMap<>().toString() “hello”.wait()
< ToString(new HashMap<>())

Every reference value ultimately inherits
CurrentDate().getHashCode() these from the Object class. Most can be
overridden.

26 School of Computing | COMP1110/6710 2025 S1 15/04/2025 gER?CSL?SPPRRCEJ\CFDEERRIngDRE\:nOZ(gg% AAAAAAAAAAAAAAAAAAAAAA

Overriding an Existing Method

Implicitly extends Object

class User {

}

27

String name;
User(String name) { .. }
String getName() { return name; }

@Override Overrides default implementation from Object
String toString() {
return name + “ / “ + super.toString();

} Calls default implementation from superclass,
in this case Object - you do not have to do that.

i QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY) =
School of Computing | COMP1110/6710 2025 S1 15/04/2025 (T:ERICé\SPPRRO\CIIJDEERngOPDRE\:/ AAAAAAAAAAAAAAAAAAAAAAA

Java Interfaces vs. Classes, Part 2

Anything can extend arbitrarily many interfaces

But only classes can extend classes, and at most one each (by
default: Object)

28

i : PRV12002 (AUSTRALIAN UNIVERSITY)
School of Computing | COMP1110/6710 2025 S1 15/04/2025 (T:ER?CSS\SPPR%\OFDEERRIEDPDREYLZUO]DZ% AAAAAAAAAA

Access Control

To preserve your ability to change things, hide
everything from others that they don’t explicitly
need

=] Australian
= National

)

==~ University

29 School of Computing | COMP1110/67102025 St 15/04/2025

Supertypes Already Hide Stuff

class Student extends User {

Date birthday;
Student(String name, Date birthday) {

super(name); Since “birthday” is only introduced here,

this.birthday = birthday; anyone looking at this object as a “User”
} does not know the field exists.
@Override

Maybe<Date> nextSalaryIncrease() {
return new Nothing<>();

}

R
L@L}.‘

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Visibility Attributes

public abstract class User {

31

public final int id;
protected String name;
private static int counter=0;

public - accessible from anywhere

protected - accessible from subclasses

private - accessible from within the class

[nothing] - accessible from classes within

the same folder

final - not technically about visibility, but
requires field to be set in
constructor, then disallows

protected User(String name) { any changes afterward

this.name = name;
this.id = counter++;

}

(this is how records work)

String getName() { return name; }

School of Computing | COMP1110/6710 2025 St

15/04/2025 ~ TEQSA PROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY)
oooooooooooooooooooooooo

Inner Classes
To get inside access

interface A { String getString(); }
class B {

Cis an “inner class”. It can only be

private String str; created from within an instance method

of B, and is then associated with that

. . object, hence it has direct
private class C implements A() {

access to its fields.
String getString() { return str; }

}
A getA() { return new C(); }

32 School of Computing | COMP1110/6710 2025 St

15/04/2025 TEQSA PROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Static Inner Classes
To get inside access

interface A { String getString(); }
class B {

private String str; D is a “static inner class”. [t can be accessed

from anywhere, and is only

logically contained within B.
public static class D implements A() { Given any B, it still has

B b; D(Bb) { this.b = b; } access to its private fields.
String getString() { return b.str; }

}
A getA() { return new D(this); }

ine | COMP1110/6710202?5<1 o 15/04/2025 ¢ TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
33 School of Computing | COMP1110/6710 2025 ST 15/04/2025 R OVIDER GopE: - 00120C

	1A
	Slide 1
	Slide 2: Today: Core OO
	Slide 3: Real Software Concerns
	Slide 4: What’s a Type?
	Slide 5: Remember: Humans and Machines
	Slide 6: Function Types
	Slide 7
	Slide 8: Behavioral Subtyping Examples
	Slide 9: Behavioral Subtyping Examples
	Slide 10: Java Interfaces
	Slide 11: Java Interfaces
	Slide 12: Java Interfaces
	Slide 13: Java Interfaces
	Slide 14: Java Interfaces
	Slide 15: Java Interfaces
	Slide 16: Java Interfaces
	Slide 17: Dynamic Dispatch
	Slide 18: Java Interfaces vs. Classes
	Slide 19: Design Recipe
	Slide 20: Design Recipe
	Slide 21: Inheritance
	Slide 22: Some things get repetitive
	Slide 23: Some things get repetitive
	Slide 24: Abstract Classes
	Slide 25: Extending Classes
	Slide 26: The Object Class – Recap:
	Slide 27: Overriding an Existing Method
	Slide 28: Java Interfaces vs. Classes, Part 2
	Slide 29: Access Control
	Slide 30: Supertypes Already Hide Stuff
	Slide 31: Visibility Attributes
	Slide 32: Inner Classes
	Slide 33: Static Inner Classes

