
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

Today:
Core OO
That means: Subtyping, Dynamic Dispatch, Overriding

Also: Inheritance, Access Control

2 15/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Working in teams, collaborating with other programmers, other
teams

- Software needs to be maintained: fixing bugs, adding features,
adapting to changes in libraries/environment

- DRY on larger scale – once written, code should be reusable for other
purposes

➔ Software should consist of small components that
 can easily be swapped out and reused elsewhere.

Real Software Concerns

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

A set of possible values!

What’s a Type?

5

1337

-42

0

6710

-90001

…

int

“Hello”

Person(“Frank”, 55)

Role.ACADEMIC

true

OrangeBasket(3)

[1, 2, 3]

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Java’s int: any integer between −231 and 231 − 1 (~ -2 billion to +2 billion)

/** A PosInt is an int that is greater than 0 */

➔ Any integer between 1 and 231 − 1 , but only as part of a human
signature. Java does not check this part.

5

Remember: Humans and Machines

15/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

6

Function Types

15/04/2025School of Computing | COMP1110/6710 2025 S1

x-> x + 1

x -> 5

x -> x > 5? x/5 : x

x - > x * x

x -> x

…

Function<Integer, Integer> /**
 * A MonoIntFun is a
 * Function<Integer,Integer>,
 * where, for any MonoIntFun f
 * and any two ints x, y, if
 * x >= y, then f(x) >= f(y)
 */

…

MonoIntFun

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

7 15/04/2025

Liskov Substitution Principle:

A type S is a subtype of a type T
if any value of type S can be used
wherever any value of type T is
expected, and it behaves according
to T’s specification.

➔ “Behavioral Subtyping”

School of Computing | COMP1110/6710 2025 S1

Barbara Liskov
Turing Award 2008

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Every PosInt is also an int, hence PosInt is a subtype of int.

- Similarly, every MonoIntFun is also a Function<Integer,Integer> …

- In both cases, the reverse is not true.

- String values (e.g. “Hello”) cannot be used where ints are expected

- Conversely, you also could not write 5.length() , hence neither is a
subtype of the other.

8

Behavioral Subtyping Examples

15/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

9

Behavioral Subtyping Examples

15/04/2025School of Computing | COMP1110/6710 2025 S1

PosInt

String Function<Integer,Integer>int

MonoIntFun

is subtype of is subtype of

However, in terms of Java types, int = PosInt, and
MonoIntFun = Function<Integer,Integer>

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

We’ve seen a special case before:

sealed interface Shape permits Rectangle, Circle {}

record Rectangle(double w, double h) implements Shape {}

record Circle(double radius) implements Shape {}

10

Java Interfaces

15/04/2025School of Computing | COMP1110/6710 2025 S1

Java’s Main Mechanism for Subtyping

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

11

Java Interfaces

15/04/2025School of Computing | COMP1110/6710 2025 S1

Java’s Main Mechanism for Subtyping

Rectangle

Circle(1.0)

Circle(5.3)

Circle(102.2)

…

Circle

Shape
Shape

CircleRectangle

is subtype of

“union”. See also HtDC

Rectangle(2.1,4.3)

Rectangle(5.7,0.4)

Rectangle(1.0, 1.2)

…

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

sealed interface Shape permits Rectangle, Circle {}

record Rectangle(double w, double h) implements Shape {}

record Circle(double radius) implements Shape {}

12

Java Interfaces

15/04/2025School of Computing | COMP1110/6710 2025 S1

Java’s Main Mechanism for Subtyping
Special feature for more functional behaviour:
allows omitting default-case in switch, but relies on knowing all cases

OO Philosophy: Allow extending programs with new classes
implementing existing interfaces all the time

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

interface Shape {}

record Rectangle(double w, double h) implements Shape {}

record Circle(double radius) implements Shape {}

13

Java Interfaces

15/04/2025School of Computing | COMP1110/6710 2025 S1

Java’s Main Mechanism for Subtyping

Now there can be arbitrarily many
classes/records implementing ConsList

BUT:
switch(shape) {
 case Rectangle(var w, var h) -> …;
 case Circle(var radius) -> …;
 default -> …; //what goes here???
}

Instead, we now use the space
between the curly braces!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

interface Shape {

 double getArea();

}

14

Java Interfaces

15/04/2025School of Computing | COMP1110/6710 2025 S1

Java’s Main Mechanism for Subtyping

Interfaces can prescribe arbitrarily many methods
that classes implementing them have to provide.
Interfaces themselves generally do have code for
those methods.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

interface Shape {

 double getArea();

}

class Circle implements Shape {

 double radius;

 Circle(double radius) { this.radius = radius; }

 @Override

 double getArea() { return radius * radius * Math.PI; }

}
15

Java Interfaces

15/04/2025School of Computing | COMP1110/6710 2025 S1

Java’s Main Mechanism for Subtyping
Implementing or replacing (see next)
a method in a supertype is called
“overriding”. Java uses the @Override
annotation to check whether there
actually is something that is being
overridden.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

interface Shape {

 double getArea();

}

class Rectangle(double w, double h) implements Shape {

 @Override

 double getArea() { return w * h; }

}

16

Java Interfaces

15/04/2025School of Computing | COMP1110/6710 2025 S1

Java’s Main Mechanism for Subtyping

Pro tip: if your fields never have to be changed,
you can also use records, which saves you
some work in writing constructors.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

double getShapeArea(Shape s) { return s.getArea(); }

void main() {

 System.out.println(getShapeArea(new Rectangle(5,3)));

 System.out.println(getShapeArea(new Circle(3.2)));

}

17

Dynamic Dispatch

15/04/2025School of Computing | COMP1110/6710 2025 S1

How do we know which method to call?

Remember: Objects know themselves. So each individual s knows whether it is
 a rectangle or a circle or …, and calls the right getArea()

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Interfaces have no instance fields, and no constructors

- The main point of interfaces is to declare (not implement) methods

- Special features (distinction-level):

- Interfaces can have static fields and methods; for fields, you can
omit the static keyword

- Interfaces can have “default” implementations for instance methods

18

Java Interfaces vs. Classes

15/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Write once for each method, in interface. Copy to classes/records
implementing the interface and overriding the method.

Design Strategy is added to actual implementation, not interface.

Examples/tests should go where they fit best – can be with the
interface to give examples/tests for everything together, or with
individual classes. There should be at least one example/test per class.

19

Design Recipe

15/04/2025School of Computing | COMP1110/6710 2025 S1

Where should things go?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

The argument types/pre-conditions of a subtype cannot be more strict
than those of a supertype. If one of your method implementations
makes certain assumptions about input data/the overall state, you need
to state that in the interface.

Similarly, the return type/post-condition must be at least as strong as
in the interface. You cannot relax any requirements of your signature in
a subclass – you need to do that in the interface.

20

Design Recipe

15/04/2025School of Computing | COMP1110/6710 2025 S1

Key point: Liskov Substitution Principle

Inheritance

Code Reuse

But only if there is Behavioural Subtyping,
because Java conflates the two concepts.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

interface User {
 String getName();
}

22

Some things get repetitive

15/04/2025School of Computing | COMP1110/6710 2025 S1

class Academic implements User {
 String name;
 Academic(String name) { … }
 @Override
 String getName() { return name; }
}

class Student implements User {
 String name;
 Student(String name) { … }
 @Override
 String getName() { return name; }
}

class ProfessionalStaff
 implements User {
 String name;
 ProfessionalStaff(String name) { … }
 @Override
 String getName() { return name; }
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

class User {
 String name;
 User(String name) { … }
 String getName()
 { return name; }
}

23

Some things get repetitive

15/04/2025School of Computing | COMP1110/6710 2025 S1

class Academic extends User {
 Academic(String name) {
 super(name);
 }
}

class Student extends User {
 Student(String name) {
 super(name);
 }
}

class ProfessionalStaff extends User {
 ProfessionalStaff(String name) {
 super(name);
 }
}

Now a class so we can have instance fields
Keyword for extending
classes is “extends”

Constructor needs to explicitly
call super-constructor with special
keyword “super”, except if there
is a parameter-less constructor

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

abstract class User {
 String name;
 User(String name) { … }
 String getName() {
 return name;
 }
 abstract Maybe<Date> nextSalaryIncrease();
}

24

Abstract Classes

15/04/2025School of Computing | COMP1110/6710 2025 S1

When you can’t implement everything right there

“abstract” methods behave as if specified
in an interface

“abstract” classes allow “abstract” methods
to exist in them, but in turn disallow directly
constructing instances of that class.
I.e. you can’t write new User(“Fabian”)
Need to use a non-abstract subclass

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

class Student extends User {
 Date birthday;
 Student(String name, Date birthday) {
 super(name);
 this.birthday = birthday;
 }
 @Override
 Maybe<Date> nextSalaryIncrease() {
 return new Nothing<>();
 }
}
25

Extending Classes

15/04/2025School of Computing | COMP1110/6710 2025 S1

A bigger Example

Can add new fields and constructor arguments

Need to initialize new fields after super-constructor call

Overriding works the same as for interfaces

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Things we’ll cover in this course:
“hello”.equals(“world”)

  Equals(“hello”, “world”)

new HashMap<>().toString()

  ToString(new HashMap<>())

CurrentDate().getHashCode()

26

The Object Class – Recap:

15/04/2025School of Computing | COMP1110/6710 2025 S1

Things we likely won’t cover:
“hello”.getClass()

“hello”.notify()

“hello”.notifyAll()

“hello”.wait()

Every reference value ultimately inherits
these from the Object class. Most can be
overridden.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

class User {
 String name;
 User(String name) { … }
 String getName() { return name; }

 @Override
 String toString() {
 return name + “ / “ + super.toString();
 }
}

27

Overriding an Existing Method

15/04/2025School of Computing | COMP1110/6710 2025 S1

Implicitly extends Object

Overrides default implementation from Object

Calls default implementation from superclass,
in this case Object – you do not have to do that.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Anything can extend arbitrarily many interfaces

- But only classes can extend classes, and at most one each (by
default: Object)

28

Java Interfaces vs. Classes, Part 2

15/04/2025School of Computing | COMP1110/6710 2025 S1

Access Control

To preserve your ability to change things, hide
everything from others that they don’t explicitly
need

15/04/202529 School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Supertypes Already Hide Stuff

class Student extends User {
 Date birthday;
 Student(String name, Date birthday) {
 super(name);
 this.birthday = birthday;
 }
 @Override
 Maybe<Date> nextSalaryIncrease() {
 return new Nothing<>();
 }
}

Since “birthday” is only introduced here,
anyone looking at this object as a “User”
does not know the field exists.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public abstract class User {

 public final int id;

 protected String name;

 private static int counter=0;

 protected User(String name) {

 this.name = name;

 this.id = counter++;

 }

 String getName() { return name; }

}

31

Visibility Attributes

15/04/2025School of Computing | COMP1110/6710 2025 S1

public – accessible from anywhere
protected – accessible from subclasses
private – accessible from within the class
[nothing] – accessible from classes within
 the same folder
final – not technically about visibility, but
 requires field to be set in
 constructor, then disallows
 any changes afterward
 (this is how records work)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

interface A { String getString(); }

class B {

 private String str;

 …

 private class C implements A() {

 String getString() { return str; }

 }

 A getA() { return new C(); }

}
32

Inner Classes

15/04/2025School of Computing | COMP1110/6710 2025 S1

To get inside access

C is an “inner class”. It can only be
created from within an instance method

of B, and is then associated with that
object, hence it has direct

access to its fields.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

interface A { String getString(); }

class B {

 private String str;

 …

 public static class D implements A() {

 B b; D(B b) { this.b = b; }

 String getString() { return b.str; }

 }

 A getA() { return new D(this); }

}
33

Static Inner Classes

15/04/2025School of Computing | COMP1110/6710 2025 S1

To get inside access

D is a “static inner class”. It can be accessed
from anywhere, and is only

logically contained within B.
Given any B, it still has

access to its private fields.

	1A
	Slide 1
	Slide 2: Today: Core OO
	Slide 3: Real Software Concerns
	Slide 4: What’s a Type?
	Slide 5: Remember: Humans and Machines
	Slide 6: Function Types
	Slide 7
	Slide 8: Behavioral Subtyping Examples
	Slide 9: Behavioral Subtyping Examples
	Slide 10: Java Interfaces
	Slide 11: Java Interfaces
	Slide 12: Java Interfaces
	Slide 13: Java Interfaces
	Slide 14: Java Interfaces
	Slide 15: Java Interfaces
	Slide 16: Java Interfaces
	Slide 17: Dynamic Dispatch
	Slide 18: Java Interfaces vs. Classes
	Slide 19: Design Recipe
	Slide 20: Design Recipe
	Slide 21: Inheritance
	Slide 22: Some things get repetitive
	Slide 23: Some things get repetitive
	Slide 24: Abstract Classes
	Slide 25: Extending Classes
	Slide 26: The Object Class – Recap:
	Slide 27: Overriding an Existing Method
	Slide 28: Java Interfaces vs. Classes, Part 2
	Slide 29: Access Control
	Slide 30: Supertypes Already Hide Stuff
	Slide 31: Visibility Attributes
	Slide 32: Inner Classes
	Slide 33: Static Inner Classes

