Australian
. » National
sy University

Sifuetured Programming

110/6 710

Needs ANU AcCount!

pollev.com/albertofmartin963
Register for Engagement

Abstract Data Types
(ADTs)

Abstract Data Types (ADTs)

Abstract Data Types (ADTs) are mathematical models for data types

- They are defined in terms of behaviour (semantics) from the user’s
perspective, NOT in terms of implementation (i.e., the specific details)

- (This is why they are abstract, i.e., not concrete).

- ADTs specify (1) possible values the data type may have (but NOT how they
are laid out/stored in memory), (2) a set of operations that a user may
perform on the data type (but NOT how they are implemented), and (3)
behaviour (semantics) of such operations

- ADTs are a CORNERSTONE for code reusability and modularity (as they
enable code that relies on abstractions rather than concretions/specifics)

- Examples of ADTs: List, Stack, Queue, Map, Tree, Graph, etc.

- Typically, different programming languages offer different mechanisms to
specify ADTs and their implementations

3 School of Computing | COMP1110/6710 2025 St 24/04/2025 ~ TEQSA PROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

ADT example: List

For the purpose of this workshop, we consider the list ADT to represent a
finite sequence of elements of the same type (e.g., list of strings)

A list is an example of container ADT, as it holds other objects (e.g., dates)

Fundamental properties of the List ADT: (1) duplicate elements are allowed;
(2) order of elements is preserved (thus, we can assign a unique index to
each element in the list).

Examples of list operations: (1) Create a new empty list. (2) Add a new
element to the end of the list. (3) Remove first occurrence of an element
from the list given the element. (4) Get the element of the list at the
specified index. (5) Replace the element of the list at the specified index by
the given element.

ine | COMPI1110/6710 2025 <1 2A4104/2025 2 0 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
School of Computing | COMP1110/6710 2025 St 24/04/2025 R iR couE, oo

ADT example: List

Add element 6

Remove element -1

Get element at index 1

Setindex 2 to 10

0 1 2 0 1 2 3
0 1 2 0 1

0 1 2

0 1 2 0 1 2

School of Computing | COMP1110/6710 2025 S1

P
""-'
24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) =

CRICOS PROVIDER CODE: 00120C

ADT implementations

ADTs can typically be realized (implemented) in different ways. A realization
of an ADT is called an ADT implementation

Any ADT implementation MUST adhere to the specified behaviour of the
ADT and its operations (following the Liskov Substitution principle)

However, implementations have the freedom to internally store/lay out in
memory the elements differently, and thus to implement the ADT operations
accordingly to the chosen internal data storage layout

Each ADT implementation typically leads to a different trade-off/balance
among memory consumption and the computational cost of its operations

Which ADT implementation will be best for a particular algorithm will
depend on the particular features of the algorithm at hand (this is why
several implementations of an ADT exist)

ine | COMPI1110/6710 2025 <1 2A4104/2025 2 0 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
School of Computing | COMP1110/6710 2025 St 24/04/2025 R iR couE, oo

Examples of ADT implementations

Singly-Linked List Array-based List

[T

. Actual elements Extra capacity
first end of the list for future elements

ConsList-based List

ol -2170

Doubly-Linked List

first
=

School of Computing | COMP1110/6710 2025 S1 24/04/2025 EE{?CSCQPPRFS)\CFDEERRIngDRE\:IEL"))]g% AAAAAAAAAAAAAAAAAAAAA

ADTs In Java

-] Australian
==/ National

)

<=7 University

ADTs In Java

- Java offers different programming mechanisms that might be used to express ADTs
and their implementations

- Among these, we will use parameterized (i.e., generic) interfaces to specify ADTs and
parameterized classes implementing such interfaces for ADT implementations (as,
among others, this is the approach followed by the Java standard library)

- Although we could define our own interfaces, we will leverage those in the Java
standard library (so that we do not reinvent the wheel, allowing our class
implementations to reuse code available in the Java standard library and beyond)

- The so-called Java collections framework offers, among others, a hierarchy of
parameterized interfaces and class implementations for such interfaces

- Note: the full details regarding generics in the particular context of interfaces,
classes and subtyping will be covered in next week’s workshop

H TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY))
9 School of Computing | COMP1110/6710 2025 S1 24/04/2025 VDR Cooe. Coroon

Collection Framework Hierarchy in Java

The Java collections framework at a glance

Hashtable

Hierarchy of interfaces (green) and
class implementations (light pink)
”"'::s::::a" - Allinterfaces and class

- HashSet
--- ArraylList

implementations are at least

parameterized by the element type
; E (not shown in the picture)
lnkedbhet 1 - In this workshop, we will use the
- LinkedList —--—%
- Vector ;\rrayoeque SortedSet
1 A
Stack TreeSet

List<E> and Collection<E>

interfaces (shown in the figure) and
the Iterator<E> interface (not
shown in the figure)

Source: freeCodeCamp

More exploration of the framework
in future workshops

School of Computing | COMP1110/6710 2025 S1

24/04/2025

TEQSA PROVI

IDER ID: PRV12002 (AUSTRALIAN
CRICOS PROVIDER CODE: 00120C

A

NIVERSITY)

()

The Java’s List<E> generic interface

- Represents the List ADT (full documentation available [here])

- A simplified/partial definition of List<E> generic interface is as follows:
/ Interface inheritance

public interface List<E> [EXtends [COTIECEIONKES {

boolean add(E element); // doc [here] \(Asubtledetailhereis
. that List<E> actually extends

boolean remove(Object o0); // doc [here] SequencedCollection<E>,

. . which in turn extends
E get(lnt 1ndeX),‘ // doc [here] Collection<E>)
E set(int index, E element); // doc [here]
int size(); // doc [here]
boolean isEmpty(); // doc [here]

.. // More interface method definitions

}

; QSA PRO : PRV12002 (AUS SITY)
Il School of Computing | COMP1110/6710 2025 St 24/04/2025 LEQSA PROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY

A

)

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#add(E)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#remove(java.lang.Object)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#get(int)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#set(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#size()
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#isEmpty()

The Java’s List<E> generic interface

Other examples of List<E> methods include:

This is known as the

unbounded wildcard in

Java generics.
public interface List<E> extends Collection<E> {

.. // Methods in the previous slide
boolean contains(Object o0);

In a nutshell, it states

boolean containsAll(Collectiond®> c);
void clear();

that f‘any type” is
(here] Fossbiess e e
// doc [here] Collection
// doc [here] Moredetails next
void add(int index, E element); // doc [here] week
E remove(int index); // doc [here]
iterator(); // doc [here]
.. // More interface method definitions
}

More details on the Iterator<T> interface on the next slide
School of Computing | COMP1110/6710 2025 St

24/04/2025

=
25
=)
Q>
o
3=
32
<=
So
|m
%
35
o
=E]
=1
N
28
38
oz
c
17}
a
3
>
[
=
z
c
=z
=
&
2
@
3
=

()

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#contains(java.lang.Object)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#containsAll(java.util.Collection)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#clear()
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#add(int,E)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#remove(int)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#iterator()
https://docs.oracle.com/javase/tutorial/java/generics/unboundedWildcards.html

The Java’s Iterator<E> generic interface

An iterator is an object that lets one walk in sequence through the objects in a
collection (without exposing the specific details of how these are stored within)
This kind of operation comes up so frequently that the standard Java library offers
a generic interface for it, namely Iterator<E>

A simplified/partial definition of Iterator<E> generic interface is as follows:

public interface Iterator<E> {
boolean hasNext(); // doc [here]
E next(); // doc [here]
.. // More interface method definitions

}

It is typically useful to implement iterators as inner classes (although not strictly
necessary; an example of this coming next) of the collection they iterate over (so
that they have easy access to the collection fields)

|lterators created out of classes implementing the Collection<E> interface, can be
automatically used in “enhanced” for statements

H TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY))
School of Computing | COMP1110/6710 2025 St 24/04/2025 R iR couE, oo

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Iterator.html#hasNext()
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Iterator.html#next()

DoublylLinkedList<E>

Let us write our own class implementation of the
List<E> generic interface using the concept of a
doubly-linked list of nodes

Doubly-Linked List

first

=

Australian
National
University

Design a generic class DoublylLinkedList<E>, parameterized by the
type of the elements E, that implements a partial set of the methods in
the List<E> interface, namely: (1) add a new element; (2) remove an
element; (3) size; (4) isEmpty; (5) get; 6) set; (7) containsAll; (8) iterator.
Follow the design recipe!

In order to get you started, we will demonstrate the class definitions
and the implementation of (1) and (8). Then, you will have time to
implement during the workshop the rest of operations, starting with
operation (2) for which some illustrations are given below in the
following slides.

ine | COMPI1110/6710 2025 <1 2A4104/2025 2 0 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
15 School of Computing | COMP1110/6710 2025 S1 24/04/2025 VDR Cooe. Coroon

DoublyLinkedList<E> add
method illustrations

-] Australian
==/ National

)

<=7 University

Doubly Linked List Implementation
(add method example) 1.add(3)

first

24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
/i CRICOS PROVIDER CODE: 00120C

Doubly Linked List Implementation
(add method example) 1.add(3)

first

24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
104/ CRICOS PROVIDER CODE: 00120C

Doubly Linked List Implemention
(add method example) 1.add(3)

®

first

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
24/04/2025 CRICOS PROVIDER CODE: 00120C

Doubly Linked List Implementation
(add method example) 1.add(3)

first

2222222222

A Vi 1D: 1. (Al
CRICOS PROVIDER CODE: 00120C

DoublyLinkedList<E> remove
method illustrations

-] Australian
==/ National

)

<=7 University

Doubly Linked List Implementation

(remove method example) 1 emove(7)

first

24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
/i CRICOS PROVIDER CODE: 00120C

Doubly Linked List Implementation

(remove method example) 1 emove(7)

first @ Find node to be removed

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
24/04/2025 CRICOS PROVIDER CODE: 00120C

Doubly Linked List Implementation

(remove method example) 1 emove(7)

first

24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
/i CRICOS PROVIDER CODE: 00120C

Doubly Linked List Implementation

(remove method example) 1 emove(7)

— oo BT

first

24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
/i CRICOS PROVIDER CODE: 00120C

Doubly Linked List Implementation

(remove method example) 1 emove(7)

.
After this process, how many

first references are pointing to the node
that stores the element 77

2222222222

A Vi 1D: 1. (Al
CRICOS PROVIDER CODE: 00120C

	1A
	Slide 1
	Slide 2: Abstract Data Types (ADTs)
	Slide 3: Abstract Data Types (ADTs)
	Slide 4: ADT example: List
	Slide 5: ADT example: List
	Slide 6: ADT implementations
	Slide 7: Examples of ADT implementations
	Slide 8: ADTs in Java
	Slide 9: ADTs in Java
	Slide 10: The Java collections framework at a glance
	Slide 11: The Java’s List<E> generic interface
	Slide 12: The Java’s List<E> generic interface
	Slide 13: The Java’s Iterator<E> generic interface
	Slide 14: DoublyLinkedList<E>
	Slide 15: Practice
	Slide 16: DoublyLinkedList<E> add method illustrations
	Slide 17: Doubly Linked List Implementation (add method example)
	Slide 18: Doubly Linked List Implementation (add method example)
	Slide 19: Doubly Linked List Implemention (add method example)
	Slide 20: Doubly Linked List Implementation (add method example)
	Slide 21: DoublyLinkedList<E> remove method illustrations
	Slide 22: Doubly Linked List Implementation (remove method example)
	Slide 23: Doubly Linked List Implementation (remove method example)
	Slide 24: Doubly Linked List Implementation (remove method example)
	Slide 25: Doubly Linked List Implementation (remove method example)
	Slide 26: Doubly Linked List Implementation (remove method example)

