
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

pollev.com/albertofmartin963
Register for Engagement

Needs ANU Account!

Abstract Data Types
(ADTs)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

3

Abstract Data Types (ADTs)

24/04/2025School of Computing | COMP1110/6710 2025 S1

- Abstract Data Types (ADTs) are mathematical models for data types

- They are defined in terms of behaviour (semantics) from the user’s
perspective, NOT in terms of implementation (i.e., the specific details)

- (This is why they are abstract, i.e., not concrete).

- ADTs specify (1) possible values the data type may have (but NOT how they
are laid out/stored in memory), (2) a set of operations that a user may
perform on the data type (but NOT how they are implemented), and (3)
behaviour (semantics) of such operations

- ADTs are a CORNERSTONE for code reusability and modularity (as they
enable code that relies on abstractions rather than concretions/specifics)

- Examples of ADTs: List, Stack, Queue, Map, Tree, Graph, etc.

- Typically, different programming languages offer different mechanisms to
specify ADTs and their implementations

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

4

ADT example: List

24/04/2025School of Computing | COMP1110/6710 2025 S1

- For the purpose of this workshop, we consider the list ADT to represent a
finite sequence of elements of the same type (e.g., list of strings)

- A list is an example of container ADT, as it holds other objects (e.g., dates)

- Fundamental properties of the List ADT: (1) duplicate elements are allowed;
(2) order of elements is preserved (thus, we can assign a unique index to
each element in the list).

- Examples of list operations: (1) Create a new empty list. (2) Add a new
element to the end of the list. (3) Remove first occurrence of an element
from the list given the element. (4) Get the element of the list at the
specified index. (5) Replace the element of the list at the specified index by
the given element.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

ADT example: List

24/04/2025School of Computing | COMP1110/6710 2025 S1

Add element 6

Remove element -1

Get element at index 1

Set index 2 to 10

Example operation Behaviour (semantics)

-1 2 -1
0 1 2

-1 2 -1
0 1 2

6
3

-1 2 -1
0 1 2

2 -1
0 1

-1 2 -1
0 1 2

2

-1 2 -1
0 1 2

-1 2 10
0 1 2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

6

ADT implementations

24/04/2025School of Computing | COMP1110/6710 2025 S1

- ADTs can typically be realized (implemented) in different ways. A realization
of an ADT is called an ADT implementation

- Any ADT implementation MUST adhere to the specified behaviour of the
ADT and its operations (following the Liskov Substitution principle)

- However, implementations have the freedom to internally store/lay out in
memory the elements differently, and thus to implement the ADT operations
accordingly to the chosen internal data storage layout

- Each ADT implementation typically leads to a different trade-off/balance
among memory consumption and the computational cost of its operations

- Which ADT implementation will be best for a particular algorithm will
depend on the particular features of the algorithm at hand (this is why
several implementations of an ADT exist)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

7

Examples of ADT implementations

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P

first

10 -2 7N N N

first end

Doubly-Linked List

Singly-Linked List

null

Array-based List

10 -2 7

Extra capacity
for future elements

Actual elements
of the list

ConsList-based List

10 -2 7

ADTs in Java

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

9

ADTs in Java

24/04/2025School of Computing | COMP1110/6710 2025 S1

- Java offers different programming mechanisms that might be used to express ADTs
and their implementations

- Among these, we will use parameterized (i.e., generic) interfaces to specify ADTs and
parameterized classes implementing such interfaces for ADT implementations (as,
among others, this is the approach followed by the Java standard library)

- Although we could define our own interfaces, we will leverage those in the Java
standard library (so that we do not reinvent the wheel, allowing our class
implementations to reuse code available in the Java standard library and beyond)

- The so-called Java collections framework offers, among others, a hierarchy of
parameterized interfaces and class implementations for such interfaces

- Note: the full details regarding generics in the particular context of interfaces,
classes and subtyping will be covered in next week’s workshop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

10

The Java collections framework at a glance

24/04/2025School of Computing | COMP1110/6710 2025 S1

Source: freeCodeCamp

- Hierarchy of interfaces (green) and
class implementations (light pink)

- All interfaces and class
implementations are at least
parameterized by the element type
E (not shown in the picture)

- In this workshop, we will use the
List<E> and Collection<E>
interfaces (shown in the figure) and
the Iterator<E> interface (not
shown in the figure)

- More exploration of the framework
in future workshops

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Represents the List ADT (full documentation available [here])

- A simplified/partial definition of List<E> generic interface is as follows:

11

The Java’s List<E> generic interface

24/04/2025School of Computing | COMP1110/6710 2025 S1

public interface List<E> extends Collection<E> {

 boolean add(E element); // doc [here]

 boolean remove(Object o); // doc [here]

 E get(int index); // doc [here]

 E set(int index, E element); // doc [here]

 int size(); // doc [here]

 boolean isEmpty(); // doc [here]

 … // More interface method definitions

}

(A subtle detail here is
that List<E> actually extends
SequencedCollection<E>,
which in turn extends
Collection<E>)

Interface inheritance

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#add(E)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#remove(java.lang.Object)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#get(int)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#set(int,java.lang.Object)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#size()
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#isEmpty()

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Other examples of List<E> methods include:

12

The Java’s List<E> generic interface

24/04/2025School of Computing | COMP1110/6710 2025 S1

public interface List<E> extends Collection<E> {

 … // Methods in the previous slide

 boolean contains(Object o); // doc [here]

 boolean containsAll(Collection<?> c); // doc [here]

 void clear(); // doc [here]

 void add(int index, E element); // doc [here]

 E remove(int index); // doc [here]

 Iterator<T> iterator(); // doc [here]

 … // More interface method definitions

}

More details on the Iterator<T> interface on the next slide

This is known as the
unbounded wildcard in
Java generics.

In a nutshell, it states
that “any type” is
possible as the type
parameter of the
Collection

More details next
week

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#contains(java.lang.Object)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#containsAll(java.util.Collection)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#clear()
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#add(int,E)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#remove(int)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html#iterator()
https://docs.oracle.com/javase/tutorial/java/generics/unboundedWildcards.html

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

13

The Java’s Iterator<E> generic interface

24/04/2025School of Computing | COMP1110/6710 2025 S1

- An iterator is an object that lets one walk in sequence through the objects in a
collection (without exposing the specific details of how these are stored within)

- This kind of operation comes up so frequently that the standard Java library offers
a generic interface for it, namely Iterator<E>

- A simplified/partial definition of Iterator<E> generic interface is as follows:
public interface Iterator<E> {

 boolean hasNext(); // doc [here]

 E next(); // doc [here]

 … // More interface method definitions

}

- It is typically useful to implement iterators as inner classes (although not strictly
necessary; an example of this coming next) of the collection they iterate over (so
that they have easy access to the collection fields)

- Iterators created out of classes implementing the Collection<E> interface, can be
automatically used in “enhanced” for statements

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Iterator.html#hasNext()
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/Iterator.html#next()

DoublyLinkedList<E>

Let us write our own class implementation of the
List<E> generic interface using the concept of a
doubly-linked list of nodes

10 -2 7
N

P P

N N

P

first
Doubly-Linked List

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

15

Practice

24/04/2025School of Computing | COMP1110/6710 2025 S1

Design a generic class DoublyLinkedList<E>, parameterized by the
type of the elements E, that implements a partial set of the methods in
the List<E> interface, namely: (1) add a new element; (2) remove an
element; (3) size; (4) isEmpty; (5) get; 6) set; (7) containsAll; (8) iterator.
Follow the design recipe!

In order to get you started, we will demonstrate the class definitions
and the implementation of (1) and (8). Then, you will have time to
implement during the workshop the rest of operations, starting with
operation (2) for which some illustrations are given below in the
following slides.

DoublyLinkedList<E> add
method illustrations

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

17

Doubly Linked List Implementation
(add method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P

first

l.add(3)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

18

Doubly Linked List Implementation
(add method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P
3P

N

first

1

l.add(3)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

19

Doubly Linked List Implemention
(add method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P
3P

N

first

2

l.add(3)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

20

Doubly Linked List Implementation
(add method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P
3P

N

first

3

l.add(3)

DoublyLinkedList<E> remove
method illustrations

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

22

Doubly Linked List Implementation
(remove method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P
3P

N

first

l.remove(7)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

23

Doubly Linked List Implementation
(remove method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P
3P

N

first

l.remove(7)

1 Find node to be removed

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

24

Doubly Linked List Implementation
(remove method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P
3P

N

first

l.remove(7)

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

25

Doubly Linked List Implementation
(remove method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P
P

N

first

l.remove(7)

3

3

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

26

Doubly Linked List Implementation
(remove method example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

10 -2 7
N

P P

N N

P
3P

N

first

l.remove(7)

After this process, how many
references are pointing to the node
that stores the element 7?

	1A
	Slide 1
	Slide 2: Abstract Data Types (ADTs)
	Slide 3: Abstract Data Types (ADTs)
	Slide 4: ADT example: List
	Slide 5: ADT example: List
	Slide 6: ADT implementations
	Slide 7: Examples of ADT implementations
	Slide 8: ADTs in Java
	Slide 9: ADTs in Java
	Slide 10: The Java collections framework at a glance
	Slide 11: The Java’s List<E> generic interface
	Slide 12: The Java’s List<E> generic interface
	Slide 13: The Java’s Iterator<E> generic interface
	Slide 14: DoublyLinkedList<E>
	Slide 15: Practice
	Slide 16: DoublyLinkedList<E> add method illustrations
	Slide 17: Doubly Linked List Implementation (add method example)
	Slide 18: Doubly Linked List Implementation (add method example)
	Slide 19: Doubly Linked List Implemention (add method example)
	Slide 20: Doubly Linked List Implementation (add method example)
	Slide 21: DoublyLinkedList<E> remove method illustrations
	Slide 22: Doubly Linked List Implementation (remove method example)
	Slide 23: Doubly Linked List Implementation (remove method example)
	Slide 24: Doubly Linked List Implementation (remove method example)
	Slide 25: Doubly Linked List Implementation (remove method example)
	Slide 26: Doubly Linked List Implementation (remove method example)

