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Recall: Doubly-Linked List

first
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Double-Linked List: [teration

for(int i = @; i < list.size(); i++) {
var element = list.get(i);

} Inefficient: has to start from “first” every time and follow
the “next” links i times.

|deally: remember last list node, and carry on from there.
But list nodes are private, for good reason.

] QSA PRO! : PRV12002 (AUSTRALIAN UNIVERS|
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Doubly-Linked List [terator

first
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Doubly-Linked List [terator

l[terator

first List
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Doubly-Linked List [terator

lterator

first List
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Doubly-Linked List [terator

lterator

first List
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lterable 2> Enhanced for-loops

for(var e : x) {

This works whenever x has a type that implements Iterable

=>» Users don’t need to know how to best iterate over x
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Method
Dispatch &
Overloading




Overloading
Multiple methods with the same name

class Foo { class Foo {
void bar(int i) { void bar(int i) {
System.out.println(i+l); System.out.println(i+l);

} Distinguished by argument types } Distinguished by argument count

void bar(String s) { void bar(int i, int j) {

System.out.println(s); System.out.println(i+j);

&)..
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“Animal-Kingdom-Oriented Programming”

Animal Food
Carnivore Herbivore Meat Plant
Cat Dingo Koala Kangaroo Mouse Cheese Grass Eucalyptus
Animal: | eat(Food food) See ws8a/AnimalKingdomTests
Carnivore: eat(Meat meat) ! in Intelli) demonstrations repo.
Cat: eat(Mouse mouse)
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Recall: Multiple Phases

Java is a compiled language, meaning that creating programs has multiple steps.
In Java:

Source Code m Intermediate Code m Machine Code
Platform-Independent Specialized to your
Hardware/Operating System
= We distinguish between things that happen
at “compile time” vs. things that happen at “run time”
*Terminology notes:
- “runtime”: an execution environment for your program, e.g. the Java Virtual Machine (the program you run as “java”)
- “run time”: the time when your program is executing
- “run-time X”: a thing that exists at run time
- “running time”: the time it takes for your program to run

A

B

ROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
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Compile Time vs. Run Time
Compile Time Run Time

Things here are also referred toas Things here are also referred to as
“static” (related, but not the same  “dynamic”, as opposed to “static”

as the static keyword in Java) - “dynamic type-checking”:

- “static type-checking”: finding finding type errors as your
type errors in your program program is running (mostly in
without running it. This is one languages like Python and
reason for why your program JavaScript, but some instances
does not compile in Java). This is one reason for

why your program crashes.

ine | COMPI110/6710 2025 Q1 99104/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Compile Time vs. Run Time

Object o = “Hello World!”;

o’'s compile-time type is Object
o’s run-time type is String

] QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
16 School of Computing | COMP1110/6710 2025 S1 22/04/2025 gERICOASPPRRO\(/”IJDEERRI?JOPDRE\:I AAAAAAAAAAAAAAAAAAAAAAAA



Compile Time vs. Run Time
Compile Time Run Time

Things here are also referred toas Things here are also referred to as
“static” (related, but not the same  “dynamic”, as opposed to “static”

as the static keyword in Java) - “dynamic method dispatch”: for

- “static method dispatch”: for instance method calls, the
static (in the meaning we saw exact code that is going to run
previously) method and depends on run-time type
constructor calls, we know at information (remember: each
compile time which code is object knows itself).

going to run

ine | COMPI110/6710 2025 Q1 99104/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Single Dispatch Multiple Dispatch

Most common form - used in Java, RRCIE=RiolqiaME=ToRlaR:-N-MIV]IF:}

C++, C#, Python, JavaScript, etc: Which code is executed depends
Which code is executed only on both the run-time type of the
depends on the run-time type of receiver and the run-time types of
the receiver and (where applicable) BGEEIg{ =115}

the compile-time types of the
arguments.

Why rare? Hard to do efficiently,
and hard to choose a “best”

Note: Python and JavaScript don't [Ee\EIgler:-lolla}:#

have Overloading. Distinction-Level Content
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Overloading vs Overriding

overriding = implementing/replacing a method in a subtype
overloading = creating a truly different method with the same name
=» Different overloadings get overridden separately

For each method call, overloading gets chosen at compile time based
on static receiver and argument types. At run time, the overriding for
that overloading is chosen based on the dynamic type of the receiver.

ine | COMPI110/6710 2025 Q1 99104/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Structure of Inheritance/Subtyping

Object

- Class inheritance forms a tree /\

Dingo Koala

- Interface inheritance forms a partial order  Herbivore Meat  Plant

A partial order is a reflexive, transitive, M ‘
and antisymmetric relation

Mouse  Kangaroo Grass
- Subtyping (in general) forms a preorder* A B C
A preorder is a reflexive and transitive relation o~ |
D ExF G

*the symmetries allowed in preorders are present in Java, but not covered in this course

&)..
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Moving Up Loses Information

Recall: subtyping can be used to hide stuff
That cuts both ways!

Object o = “Hello World”;

oisaString, but youcan’tuse o.length(), because those members
are now hidden.
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21 School of Computing | COMP1110/6710 2025 St 22/04/2025 e &

...



Recovering Lost
Type Information

Casts and instanceof
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(Down-)Casts

Object o =
String s =
System.out

..; //we somehow know that this is a String
(String)o; A cast expression inserts a run-time check.

.println(s.length()); Thecheck failsif oisnota String,
which will crash the program.
Conversely, if the program does not
crash, o is a String, and so the
assignment to s is valid.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Instanceof

Object o = ..;
if(o instanceof String) { .. }

An instanceof expression checks whether
the left operand has the type given as the
right operand, and returns a corresponding
boolean.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
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Instanceof + casts

Object o = ..; Object o = ..;

if(o instanceof String) { if(o instanceof String s) {
String s = (String)o; .

}

The right-hand version is a (relatively new) shorthand
for the common pattern on the left.
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Generics

Avoiding Type Information Loss
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Old Java List Interface

List 1 = new ArraylList();

boolean add(Object o); 1.add(“Hello”);
Object get(int index); 1.add(5);
String s = (String)l.get(0);

s = (String)l.get(1);

Need to write casts everywhere ®

Need to hope that the values in the list are what you expect ®

Easy to get wrong ®

https://javaalmanac.io/jdk/1.4/api/java/util/List.html
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Generics - Type Abstraction

Key Insight: for a typical container implementation (like lists), the type
of its elements does not matter - it would do the same for any kind of
element type. The user of the container, however, does care about what

is in there.

Java’s interpretation: the old implementations of ArrayList etc. do not
need to change at all. Only the way they are type-checked.
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Generic Type Arguments

- Ininterface/class/record declarations:
list of type variables between angle brackets after name, e.g.:
public class Map<K,V> { .. }
Scope: whole interface/class/record

- In static/instance method declarations:
list of type variables between angle brackets before return type, e.g.:
public abstract <T> List<T> map(Function<String,T> fun);
Scope: method

Within scope, type argument is like any other type, except that we
know nothing about its members (other than those from Object)
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Generic Type Arguments

Main purpose: consistency
<T>Tid(Tt) {returnt;} V() vs. Object id(Object t) {return t:} v/ ()
<T>Tid(T t) {return 5; }X @ vs. Object id(Object t) { return 5; } \/®

So user knows that id(“Hello”) will return a String, not some arbitrary
thing.

)ﬂ}) =
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WARNING - Type Erasure

In Java, generics is a compile-time concept only. The compiler turns

List<Integer> 1 = new ArraylList<>();
1.add(5);
Integer i = 1.get(0);

into

. . Just like in old Java, but with more
List 1 = new ArraylList(); guarantees, and automatically
1.add(5); inserted casts.

Integer 1 = (Integer)l.get(Q); = backwards-compatibility

You can also write this code directly, accessing the so-called “raw” types
of List and ArrayList. Don’t do that!
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WARNING - Type Erasure

Since the runtime does not know about generics, you cannot
meaningfully write (where T is a type argument):

- X instanceof T

- (T)x

and

- X instanceof List<T> becomes x instanceof List
- (List<T>)x becomes (List)x

This is because at run time, we do not know anymore what T was

32 School of Computing | COMP1110/6710 2025 St 22/04/2025 ~ TEQSA PROVIDERID; : PRV12002 (AUSTRALIAN UNIVERSITY)
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Generics and Subtyping

Stringis a subtype of Object.

Is List<String> a subtype of List<Object>?

NO!

List<Object> 1 = new ArrayList<Object>();

l.add(5); // this is fine

1 = new ArraylList<String>(); // subtyping would allow this
l.add(5); // this would add an int to a list of Strings ®
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Generics &
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Subtyping - Variance

Variance = the relationship of movements in the subtyping hierarchy
Prime example: function subtyping

Covariance:

String myFun(Object o)

Since every String is an Object, this can be used wherever an
Object myFun(Object o)

is expected. Return types are “covariant” (return type is a subtype =
function type is a subtype).

=

=
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Subtyping - Variance

Variance = the relationship of movements in the subtyping hierarchy
Prime example: function subtyping

Contravariance:

Object myFun(Object o)

Since every String is an Object, this can be used wherever an
Object myFun(String o)

is expected. Argument types are “contravariant” (argument type is a
supertype - function type is a subtype).

=

=
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Subtyping - Variance

Variance = the relationship of movements in the subtyping hierarchy
Previous example: generics

Invariance:

List<String>

IS not a subtype of

List<Object>

or vice versa.

Note: ArrayList<String> is a subtype of List<String>

=

o/

Distinction-Level Content
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Subtyping - Variance

Variance = the relationship of movements in the subtyping hierarchy

Intuition:
A type argument is covariant if it is only used to “read” values

A type argument is contravariant if it only use to “write” values
A type argument is invariant if it is both used for “reading” and

38

“writing”
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Subtyping - Variance & Generics

Java allows wildcards ? in generic types, with modifiers for variance:
e.g. List<?> x; List<? extends String> y; List<? super T> z;

This is called “use-site variance”, as variance is declared in types, not
type definitions.

Other languages have “declaration-site” variance, where a particular
generic type is directly declared to always have a certain variance.

=

o/
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Subtyping - Variance & Generics

Java allows wildcards ? in generic types, with modifiers for variance:

List<? extends T> -covariance. If A subtype of B, then
List<? extends A> subtype of List<? extends B>

Disables access to methods with T in argument

=

=
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Subtyping - Variance & Generics

Java allows wildcards ? in generic types, with modifiers for variance:

List<? super T> -contravariance. If A subtype of B, then
List<? super B> subtype of List<? super A>

Disables access to methods with T in return type

=

=
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Subtyping - Variance & Generics

Java allows wildcards ? in generic types, with modifiers for variance:
List<?> is alist of anything. Any List<T> is a subtype of List<?>

Disables access to methods with T in argument, and makes T Object in
return types.

=

=
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Generics - Constraints

By default, we know nothing about a type argument T. Only methods
from Object are available.

We can add constraints to type argument declarations in
interfaces/classes/records/methods:

public class AnimallList<T extends Animal> {

void feedAll(Food food) {'Tcm1beCaLorKoam,m-upto/MﬂmaL
so we know that

for(T t : animals) { [tleat(food); } Animal methods

} are available

]
=
=

Distinction-Level Content
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