
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

A Few More
Things on
Iterators

22/04/20252 School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Recall: Doubly-Linked List

10 -2 7
N

P P

N N

P
3P

N

first List

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

for(int i = 0; i < list.size(); i++) {

 var element = list.get(i);

 …

}

4

Double-Linked List: Iteration

22/04/2025School of Computing | COMP1110/6710 2025 S1

Inefficient: has to start from “first” every time and follow
the “next” links i times.

Ideally: remember last list node, and carry on from there.
But list nodes are private, for good reason.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List Iterator

10 -2 7
N

P P

N N

P
3P

N

first

C
null

Iterator

List

L

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List Iterator

10 -2 7
N

P P

N N

P
3P

N

first

Iterator

List

LL

C

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List Iterator

10 -2 7
N

P P

N N

P
3P

N

first

Iterator

List

L L

C

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List Iterator

10 -2 7
N

P P

N N

P
3P

N

first

Iterator

List

L L

C

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List Iterator

10 -2 7
N

P P

N N

P
3P

N

first

Iterator

List

L L

C

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

for(var e : x) {

 …

}

10

Iterable → Enhanced for-loops

22/04/2025School of Computing | COMP1110/6710 2025 S1

This works whenever x has a type that implements Iterable

➔ Users don’t need to know how to best iterate over x

Method
Dispatch &
Overloading

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

class Foo {

 void bar(int i) {

 System.out.println(i+1);

 }

 void bar(String s) {

 System.out.println(s);

 }

}

Overloading
Multiple methods with the same name

class Foo {

 void bar(int i) {

 System.out.println(i+1);

 }

 void bar(int i, int j) {

 System.out.println(i+j);

 }

}

Distinguished by argument types Distinguished by argument count

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

“Animal-Kingdom-Oriented Programming”

Animal

Carnivore Herbivore

Cat Dingo Koala Kangaroo

Food

Meat Plant

Mouse Grass EucalyptusCheese

Animal: eat(Food food)
Carnivore: eat(Meat meat)
Cat: eat(Mouse mouse)

? See ws8a/AnimalKingdomTests
in IntelliJ demonstrations repo.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Recall: Multiple Phases

Java is a compiled language, meaning that creating programs has multiple steps.
In Java:

Source Code Compiler Intermediate Code Runtime Machine Code

Specialized to your
Hardware/Operating System

Platform-Independent

➔We distinguish between things that happen
at “compile time” vs. things that happen at “run time”

*Terminology notes:
- “runtime”: an execution environment for your program, e.g. the Java Virtual Machine (the program you run as “java”)
- “run time”: the time when your program is executing
- “run-time X”: a thing that exists at run time
- “running time”: the time it takes for your program to run

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Things here are also referred to as
“static” (related, but not the same
as the static keyword in Java)

- “static type-checking”: finding
type errors in your program
without running it. This is one
reason for why your program
does not compile

15

Compile Time vs. Run Time

22/04/2025School of Computing | COMP1110/6710 2025 S1

Compile Time Run Time
Things here are also referred to as
“dynamic”, as opposed to “static”

- “dynamic type-checking”:
finding type errors as your
program is running (mostly in
languages like Python and
JavaScript, but some instances
in Java). This is one reason for
why your program crashes.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Object o = “Hello World!”;

o’s compile-time type is Object

o’s run-time type is String

16

Compile Time vs. Run Time

22/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Things here are also referred to as
“static” (related, but not the same
as the static keyword in Java)

- “static method dispatch”: for
static (in the meaning we saw
previously) method and
constructor calls, we know at
compile time which code is
going to run

17

Compile Time vs. Run Time

22/04/2025School of Computing | COMP1110/6710 2025 S1

Compile Time Run Time
Things here are also referred to as
“dynamic”, as opposed to “static”

- “dynamic method dispatch”: for
instance method calls, the
exact code that is going to run
depends on run-time type
information (remember: each
object knows itself).

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Most common form - used in Java,
C++, C#, Python, JavaScript, etc:

Which code is executed only
depends on the run-time type of
the receiver and (where applicable)
the compile-time types of the
arguments.

Note: Python and JavaScript don’t
have overloading.
18

Dynamic Method Dispatch

22/04/2025School of Computing | COMP1110/6710 2025 S1

Single Dispatch Multiple Dispatch
Rare form, used in e.g. Julia:

Which code is executed depends
on both the run-time type of the
receiver and the run-time types of
the arguments.

Why rare? Hard to do efficiently,
and hard to choose a “best”
overloading.

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

overriding = implementing/replacing a method in a subtype

overloading = creating a truly different method with the same name

➔ Different overloadings get overridden separately

For each method call, overloading gets chosen at compile time based
on static receiver and argument types. At run time, the overriding for
that overloading is chosen based on the dynamic type of the receiver.

19

Overloading vs Overriding

22/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Class inheritance forms a tree

- Interface inheritance forms a partial order
A partial order is a reflexive, transitive,
and antisymmetric relation

- Subtyping (in general) forms a preorder*
A preorder is a reflexive and transitive relation

Structure of Inheritance/Subtyping

*the symmetries allowed in preorders are present in Java, but not covered in this course

Object

Dingo Koala

Herbivore Meat

Kangaroo

Plant

GrassMouse

A B C

D E ≈ F G

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Recall: subtyping can be used to hide stuff

That cuts both ways!

Object o = “Hello World”;

o is a String, but you can’t use o.length(), because those members
are now hidden.

21

Moving Up Loses Information

22/04/2025School of Computing | COMP1110/6710 2025 S1

Recovering Lost
Type Information
Casts and instanceof

22 22/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Object o = …; //we somehow know that this is a String

String s = (String)o;

System.out.println(s.length());

(Down-)Casts

A cast expression inserts a run-time check.

The check fails if o is not a String,
which will crash the program.
Conversely, if the program does not
crash, o is a String, and so the
assignment to s is valid.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Object o = …;

if(o instanceof String) { … }

instanceof

An instanceof expression checks whether
the left operand has the type given as the
right operand, and returns a corresponding
boolean.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Object o = …;

if(o instanceof String) {

 String s = (String)o;

 …

}

instanceof + casts

The right-hand version is a (relatively new) shorthand
for the common pattern on the left.

Object o = …;

if(o instanceof String s) {

 …

}

Generics

Avoiding Type Information Loss

26 22/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

…

boolean add(Object o);

Object get(int index);

…

Old Java List Interface

https://javaalmanac.io/jdk/1.4/api/java/util/List.html

List l = new ArrayList();

l.add(“Hello”);

l.add(5);

String s = (String)l.get(0);

s = (String)l.get(1);

Need to write casts everywhere 
Need to hope that the values in the list are what you expect 
Easy to get wrong 

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Key Insight: for a typical container implementation (like lists), the type
of its elements does not matter – it would do the same for any kind of
element type. The user of the container, however, does care about what
is in there.

Java’s interpretation: the old implementations of ArrayList etc. do not
need to change at all. Only the way they are type-checked.

28

Generics – Type Abstraction

22/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- In interface/class/record declarations:
list of type variables between angle brackets after name, e.g.:
public class Map<K,V> { … }
Scope: whole interface/class/record

- In static/instance method declarations:
list of type variables between angle brackets before return type, e.g.:
public abstract <T> List<T> map(Function<String,T> fun);
Scope: method

Within scope, type argument is like any other type, except that we
know nothing about its members (other than those from Object)

29

Generic Type Arguments

22/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Main purpose: consistency

<T> T id(T t) { return t; } vs. Object id(Object t) { return t; }

<T> T id(T t) { return 5; } vs. Object id(Object t) { return 5; }

So user knows that id(“Hello”) will return a String, not some arbitrary
thing.

30

Generic Type Arguments

22/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

In Java, generics is a compile-time concept only. The compiler turns
List<Integer> l = new ArrayList<>();
l.add(5);
Integer i = l.get(0);

into
List l = new ArrayList();
l.add(5);
Integer i = (Integer)l.get(0);

31

WARNING – Type Erasure

22/04/2025School of Computing | COMP1110/6710 2025 S1

Just like in old Java, but with more
guarantees, and automatically
inserted casts.
➔ backwards-compatibility

You can also write this code directly, accessing the so-called “raw” types
of List and ArrayList. Don’t do that!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Since the runtime does not know about generics, you cannot
meaningfully write (where T is a type argument):
- x instanceof T

- (T)x

and

- x instanceof List<T> becomes x instanceof List

- (List<T>)x becomes (List)x

This is because at run time, we do not know anymore what T was

32

WARNING – Type Erasure

22/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

String is a subtype of Object.

Is List<String> a subtype of List<Object>?

NO!
List<Object> l = new ArrayList<Object>();

l.add(5); // this is fine

l = new ArrayList<String>(); // subtyping would allow this

l.add(5); // this would add an int to a list of Strings 

33

Generics and Subtyping

22/04/2025School of Computing | COMP1110/6710 2025 S1

Advanced
Generics &
Subtyping

Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variance = the relationship of movements in the subtyping hierarchy

Prime example: function subtyping

Covariance:
String myFun(Object o)

Since every String is an Object, this can be used wherever an
Object myFun(Object o)

is expected. Return types are “covariant” (return type is a subtype →
function type is a subtype).

35

Subtyping - Variance

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variance = the relationship of movements in the subtyping hierarchy

Prime example: function subtyping

Contravariance:
Object myFun(Object o)

Since every String is an Object, this can be used wherever an
Object myFun(String o)

is expected. Argument types are “contravariant” (argument type is a
supertype → function type is a subtype).

36

Subtyping - Variance

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variance = the relationship of movements in the subtyping hierarchy

Previous example: generics

Invariance:
List<String>

is not a subtype of
List<Object>

or vice versa.

Note: ArrayList<String> is a subtype of List<String>

37

Subtyping - Variance

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Variance = the relationship of movements in the subtyping hierarchy

Intuition:

- A type argument is covariant if it is only used to “read” values

- A type argument is contravariant if it only use to “write” values

- A type argument is invariant if it is both used for “reading” and
“writing”

38

Subtyping - Variance

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Java allows wildcards ? in generic types, with modifiers for variance:

e.g. List<?> x; List<? extends String> y; List<? super T> z;

This is called “use-site variance”, as variance is declared in types, not
type definitions.

Other languages have “declaration-site” variance, where a particular
generic type is directly declared to always have a certain variance.

39

Subtyping – Variance & Generics

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Java allows wildcards ? in generic types, with modifiers for variance:

List<? extends T> - covariance. If A subtype of B, then
 List<? extends A> subtype of List<? extends B>

Disables access to methods with T in argument

40

Subtyping – Variance & Generics

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Java allows wildcards ? in generic types, with modifiers for variance:

List<? super T> - contravariance. If A subtype of B, then
 List<? super B> subtype of List<? super A>

Disables access to methods with T in return type

41

Subtyping – Variance & Generics

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Java allows wildcards ? in generic types, with modifiers for variance:

List<?> is a list of anything. Any List<T> is a subtype of List<?>

Disables access to methods with T in argument, and makes T Object in
return types.

42

Subtyping – Variance & Generics

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

By default, we know nothing about a type argument T. Only methods
from Object are available.

We can add constraints to type argument declarations in
interfaces/classes/records/methods:

public class AnimalList<T extends Animal> {

 …

 void feedAll(Food food) {

 for(T t : animals) { t.eat(food); }

 }

43

Generics – Constraints

22/04/2025School of Computing | COMP1110/6710 2025 S1 Distinction-Level Content

T can be Cat, or Koala, … - up to Animal,
so we know that
Animal methods

are available

	1A
	Slide 1
	Slide 2: A Few More Things on Iterators
	Slide 3: Recall: Doubly-Linked List
	Slide 4: Double-Linked List: Iteration
	Slide 5: Doubly-Linked List Iterator
	Slide 6: Doubly-Linked List Iterator
	Slide 7: Doubly-Linked List Iterator
	Slide 8: Doubly-Linked List Iterator
	Slide 9: Doubly-Linked List Iterator
	Slide 10: Iterable  Enhanced for-loops
	Slide 11: Method Dispatch & Overloading
	Slide 12: Overloading
	Slide 13: “Animal-Kingdom-Oriented Programming”
	Slide 14: Recall: Multiple Phases
	Slide 15: Compile Time vs. Run Time
	Slide 16: Compile Time vs. Run Time
	Slide 17: Compile Time vs. Run Time
	Slide 18: Dynamic Method Dispatch
	Slide 19: Overloading vs Overriding
	Slide 20: Structure of Inheritance/Subtyping
	Slide 21: Moving Up Loses Information
	Slide 22: Recovering Lost Type Information
	Slide 23: (Down-)Casts
	Slide 24: instanceof
	Slide 25: instanceof + casts
	Slide 26: Generics
	Slide 27: Old Java List Interface
	Slide 28: Generics – Type Abstraction
	Slide 29: Generic Type Arguments
	Slide 30: Generic Type Arguments
	Slide 31: WARNING – Type Erasure
	Slide 32: WARNING – Type Erasure
	Slide 33: Generics and Subtyping
	Slide 34: Advanced Generics & Subtyping
	Slide 35: Subtyping - Variance
	Slide 36: Subtyping - Variance
	Slide 37: Subtyping - Variance
	Slide 38: Subtyping - Variance
	Slide 39: Subtyping – Variance & Generics
	Slide 40: Subtyping – Variance & Generics
	Slide 41: Subtyping – Variance & Generics
	Slide 42: Subtyping – Variance & Generics
	Slide 43: Generics – Constraints

