: A 5 _Australl
. Structured Rﬁ@gra|ng ool at[al
> .

| Wh | rsit
COM-" i/@?ﬂ

S e

Image Courtesy NASA/JPL-Caltech.

A Few More
Things on
lterators

-] Australian
==/ National
<=7 University

2 School of Computing | COMP1110/67102025 St 22/04/2025

Recall: Doubly-Linked List

first

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Double-Linked List: [teration

for(int i = @; i < list.size(); i++) {
var element = list.get(i);

} Inefficient: has to start from “first” every time and follow
the “next” links i times.

|deally: remember last list node, and carry on from there.
But list nodes are private, for good reason.

] QSA PRO! : PRV12002 (AUSTRALIAN UNIVERS|
4 School of Computing | COMP1110/6710 2025 S1 22/04/2025 éilc;SPPRRO\(/”IJDEERRIgOPDRE\:I AAAAAAAAAAAAAAAAAAAAAAAA

Doubly-Linked List [terator

first

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List [terator

l[terator

first List

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List [terator

lterator

first List

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List [terator

lterator

first List

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Doubly-Linked List [terator

lterator

first List

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

lterable 2> Enhanced for-loops

for(var e : x) {

This works whenever x has a type that implements Iterable

=>» Users don’t need to know how to best iterate over x

10 School of Computing | COMP1110/6710 2025 S1 22/04/2025 EER?CS;SPPR%\OF;ERRIEéb!’[)REYEOO]OZZO AAAAAAAAAAAAAAAAAAAAA

Method
Dispatch &
Overloading

Overloading
Multiple methods with the same name

class Foo { class Foo {
void bar(int i) { void bar(int i) {
System.out.println(i+l); System.out.println(i+l);

} Distinguished by argument types } Distinguished by argument count

void bar(String s) { void bar(int i, int j) {

System.out.println(s); System.out.println(i+j);

&)..

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

“Animal-Kingdom-Oriented Programming”

Animal Food
Carnivore Herbivore Meat Plant
Cat Dingo Koala Kangaroo Mouse Cheese Grass Eucalyptus
Animal: | eat(Food food) See ws8a/AnimalKingdomTests
Carnivore: eat(Meat meat) ! in Intelli) demonstrations repo.
Cat: eat(Mouse mouse)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Recall: Multiple Phases

Java is a compiled language, meaning that creating programs has multiple steps.
In Java:

Source Code m Intermediate Code m Machine Code
Platform-Independent Specialized to your
Hardware/Operating System
= We distinguish between things that happen
at “compile time” vs. things that happen at “run time”
*Terminology notes:
- “runtime”: an execution environment for your program, e.g. the Java Virtual Machine (the program you run as “java”)
- “run time”: the time when your program is executing
- “run-time X”: a thing that exists at run time
- “running time”: the time it takes for your program to run

A

B

ROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

A

Compile Time vs. Run Time
Compile Time Run Time

Things here are also referred toas Things here are also referred to as
“static” (related, but not the same “dynamic”, as opposed to “static”

as the static keyword in Java) - “dynamic type-checking”:

- “static type-checking”: finding finding type errors as your
type errors in your program program is running (mostly in
without running it. This is one languages like Python and
reason for why your program JavaScript, but some instances
does not compile in Java). This is one reason for

why your program crashes.

ine | COMPI110/6710 2025 Q1 99104/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
15 School of Computing | COMP1110/6710 2025 St 22/04/2025 L O e o2

Compile Time vs. Run Time

Object o = “Hello World!”;

o’'s compile-time type is Object
o’s run-time type is String

] QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
16 School of Computing | COMP1110/6710 2025 S1 22/04/2025 gERICOASPPRRO\(/”IJDEERRI?JOPDRE\:I AAAAAAAAAAAAAAAAAAAAAAAA

Compile Time vs. Run Time
Compile Time Run Time

Things here are also referred toas Things here are also referred to as
“static” (related, but not the same “dynamic”, as opposed to “static”

as the static keyword in Java) - “dynamic method dispatch”: for

- “static method dispatch”: for instance method calls, the
static (in the meaning we saw exact code that is going to run
previously) method and depends on run-time type
constructor calls, we know at information (remember: each
compile time which code is object knows itself).

going to run

ine | COMPI110/6710 2025 Q1 99104/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
17 School of Computing | COMP1110/6710 2025 St 22/04/2025 L O e o2

Single Dispatch Multiple Dispatch

Most common form - used in Java, RRCIE=RiolqiaME=ToRlaR:-N-MIV]IF:}

C++, C#, Python, JavaScript, etc: Which code is executed depends
Which code is executed only on both the run-time type of the
depends on the run-time type of receiver and the run-time types of
the receiver and (where applicable) BGEEIg{ =115}

the compile-time types of the
arguments.

Why rare? Hard to do efficiently,
and hard to choose a “best”

Note: Python and JavaScript don't [Ee\EIgler:-lolla}:#

have Overloading. Distinction-Level Content

ine | COMPI110/67102025s1 22/04/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
18 School of Computing | COMP1110/6710 2025 S1 22/04/2025 L O e o2

Overloading vs Overriding

overriding = implementing/replacing a method in a subtype
overloading = creating a truly different method with the same name
=» Different overloadings get overridden separately

For each method call, overloading gets chosen at compile time based
on static receiver and argument types. At run time, the overriding for
that overloading is chosen based on the dynamic type of the receiver.

ine | COMPI110/6710 2025 Q1 99104/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
19 School of Computing | COMP1110/6710 2025 St 22/04/2025 L O e o2

Structure of Inheritance/Subtyping

Object

- Class inheritance forms a tree /\

Dingo Koala

- Interface inheritance forms a partial order Herbivore Meat Plant

A partial order is a reflexive, transitive, M ‘
and antisymmetric relation

Mouse Kangaroo Grass
- Subtyping (in general) forms a preorder* A B C
A preorder is a reflexive and transitive relation o~ |
D ExF G

*the symmetries allowed in preorders are present in Java, but not covered in this course

&)..

CRICOS PROVIDER CODE: 00120C

Moving Up Loses Information

Recall: subtyping can be used to hide stuff
That cuts both ways!

Object o = “Hello World”;

oisaString, but youcan’tuse o.length(), because those members
are now hidden.

ine | COMP1110/6710 2025 <1 o 9904/2025 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
21 School of Computing | COMP1110/6710 2025 St 22/04/2025 e &

...

Recovering Lost
Type Information

Casts and instanceof

=/ Australian
==/ National

\

<=7 University

22 School of Computing | COMP1110/6710 2025 S1 22/04/2025

(Down-)Casts

Object o =
String s =
System.out

..; //we somehow know that this is a String
(String)o; A cast expression inserts a run-time check.

.println(s.length()); Thecheck failsif oisnota String,
which will crash the program.
Conversely, if the program does not
crash, o is a String, and so the
assignment to s is valid.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Instanceof

Object o = ..;
if(o instanceof String) { .. }

An instanceof expression checks whether
the left operand has the type given as the
right operand, and returns a corresponding
boolean.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Instanceof + casts

Object o = ..; Object o = ..;

if(o instanceof String) { if(o instanceof String s) {
String s = (String)o; .

}

The right-hand version is a (relatively new) shorthand
for the common pattern on the left.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Generics

Avoiding Type Information Loss

Australian
National
University

86hool of Computing | COMP1110/6710 2025 St 22/04/2025

Old Java List Interface

List 1 = new ArraylList();

boolean add(Object o); 1.add(“Hello”);
Object get(int index); 1.add(5);
String s = (String)l.get(0);

s = (String)l.get(1);

Need to write casts everywhere ®

Need to hope that the values in the list are what you expect ®

Easy to get wrong ®

https://javaalmanac.io/jdk/1.4/api/java/util/List.html

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Generics - Type Abstraction

Key Insight: for a typical container implementation (like lists), the type
of its elements does not matter - it would do the same for any kind of
element type. The user of the container, however, does care about what

is in there.

Java’s interpretation: the old implementations of ArrayList etc. do not
need to change at all. Only the way they are type-checked.

ine | COMPI110/6710 2025 Q1 99104/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
28 School of Computing | COMP1110/6710 2025 St 22/04/2025 L O e o2

Generic Type Arguments

- Ininterface/class/record declarations:
list of type variables between angle brackets after name, e.g.:
public class Map<K,V> { .. }
Scope: whole interface/class/record

- In static/instance method declarations:
list of type variables between angle brackets before return type, e.g.:
public abstract <T> List<T> map(Function<String,T> fun);
Scope: method

Within scope, type argument is like any other type, except that we
know nothing about its members (other than those from Object)

ine | COMPI110/6710 2025 Q1 99104/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
29 School of Computing | COMP1110/6710 2025 St 22/04/2025 L O e o2

Generic Type Arguments

Main purpose: consistency
<T>Tid(Tt) {returnt;} V() vs. Object id(Object t) {return t:} v/ ()
<T>Tid(T t) {return 5; }X @ vs. Object id(Object t) { return 5; } \/®

So user knows that id(“Hello”) will return a String, not some arbitrary
thing.

)ﬂ}) =

ine | COMP1110/6710 2025 <1 o 9904/2025 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
30 School of Computing | COMP1110/6710 2025 S1 22/04/2025 e onE . 001206

WARNING - Type Erasure

In Java, generics is a compile-time concept only. The compiler turns

List<Integer> 1 = new ArraylList<>();
1.add(5);
Integer i = 1.get(0);

into

. . Just like in old Java, but with more
List 1 = new ArraylList(); guarantees, and automatically
1.add(5); inserted casts.

Integer 1 = (Integer)l.get(Q); = backwards-compatibility

You can also write this code directly, accessing the so-called “raw” types
of List and ArrayList. Don’t do that!

31 School of Computing | COMP1110/6710 2025 ST 22/04/2025 iR e ODE: 00120

WARNING - Type Erasure

Since the runtime does not know about generics, you cannot
meaningfully write (where T is a type argument):

- X instanceof T

- (T)x

and

- X instanceof List<T> becomes x instanceof List
- (List<T>)x becomes (List)x

This is because at run time, we do not know anymore what T was

32 School of Computing | COMP1110/6710 2025 St 22/04/2025 ~ TEQSA PROVIDERID; : PRV12002 (AUSTRALIAN UNIVERSITY)

OOOOOOOOOOOOOOOOOOOOOOOO

Generics and Subtyping

Stringis a subtype of Object.

Is List<String> a subtype of List<Object>?

NO!

List<Object> 1 = new ArrayList<Object>();

l.add(5); // this is fine

1 = new ArraylList<String>(); // subtyping would allow this
l.add(5); // this would add an int to a list of Strings ®

ine | COMP1110/6710 2025 <1 o 9904/2025 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
33 School of Computing | COMP1110/6710 2025 S1 22/04/2025 CRIGOS PROVIDER GODE: 001296

Advanced
Generics &
Subtyping

Distinction-Level Content

Subtyping - Variance

Variance = the relationship of movements in the subtyping hierarchy
Prime example: function subtyping

Covariance:

String myFun(Object o)

Since every String is an Object, this can be used wherever an
Object myFun(Object o)

is expected. Return types are “covariant” (return type is a subtype =
function type is a subtype).

=

=

35 School of Computing | COMP1110/6710 2025 S1 22/04/2025 D | Stl nCt | On _ Level CO ntent

Subtyping - Variance

Variance = the relationship of movements in the subtyping hierarchy
Prime example: function subtyping

Contravariance:

Object myFun(Object o)

Since every String is an Object, this can be used wherever an
Object myFun(String o)

is expected. Argument types are “contravariant” (argument type is a
supertype - function type is a subtype).

=

=

36 School of Computing | COMP1110/6710 2025 S1 22/04/2025 D | Stl nCt | on- Level. CO ntent

Subtyping - Variance

Variance = the relationship of movements in the subtyping hierarchy
Previous example: generics

Invariance:

List<String>

IS not a subtype of

List<Object>

or vice versa.

Note: ArrayList<String> is a subtype of List<String>

=

o/

Distinction-Level Content

37 School of Computing | COMP1110/6710 2025 S1 22/04/2025

Subtyping - Variance

Variance = the relationship of movements in the subtyping hierarchy

Intuition:
A type argument is covariant if it is only used to “read” values

A type argument is contravariant if it only use to “write” values
A type argument is invariant if it is both used for “reading” and

38

“writing”

School of Computing | COMP1110/6710 2025 St

22/04/2025

=

=

Distinction-Level Content

Subtyping - Variance & Generics

Java allows wildcards ? in generic types, with modifiers for variance:
e.g. List<?> x; List<? extends String> y; List<? super T> z;

This is called “use-site variance”, as variance is declared in types, not
type definitions.

Other languages have “declaration-site” variance, where a particular
generic type is directly declared to always have a certain variance.

=

o/

39 School of Computing | COMP1110/6710 2025 S1 22/04/2025 D|St| nCtlon—LeVel Content

Subtyping - Variance & Generics

Java allows wildcards ? in generic types, with modifiers for variance:

List<? extends T> -covariance. If A subtype of B, then
List<? extends A> subtype of List<? extends B>

Disables access to methods with T in argument

=

=

40 School of Computing | COMP1110/6710 2025 S1 22/04/2025 DlStlnCtlon—LeVel Content

Subtyping - Variance & Generics

Java allows wildcards ? in generic types, with modifiers for variance:

List<? super T> -contravariance. If A subtype of B, then
List<? super B> subtype of List<? super A>

Disables access to methods with T in return type

=

=

4 School of Computing | COMP1110/6710 2025 S1 22/04/2025 D | St| nct | on- Leve[CO n‘ten‘t

Subtyping - Variance & Generics

Java allows wildcards ? in generic types, with modifiers for variance:
List<?> is alist of anything. Any List<T> is a subtype of List<?>

Disables access to methods with T in argument, and makes T Object in
return types.

=

=

42 School of Computing | COMP1110/6710 2025 S1 22/04/2025 DlStlnCtlon—LeVel Content

Generics - Constraints

By default, we know nothing about a type argument T. Only methods
from Object are available.

We can add constraints to type argument declarations in
interfaces/classes/records/methods:

public class AnimallList<T extends Animal> {

void feedAll(Food food) {'Tcm1beCaLorKoam,m-upto/MﬂmaL
so we know that

for(T t : animals) { [tleat(food); } Animal methods

} are available

]
=
=

Distinction-Level Content

43 School of Computing | COMP1110/6710 2025 S1 22/04/2025

	1A
	Slide 1
	Slide 2: A Few More Things on Iterators
	Slide 3: Recall: Doubly-Linked List
	Slide 4: Double-Linked List: Iteration
	Slide 5: Doubly-Linked List Iterator
	Slide 6: Doubly-Linked List Iterator
	Slide 7: Doubly-Linked List Iterator
	Slide 8: Doubly-Linked List Iterator
	Slide 9: Doubly-Linked List Iterator
	Slide 10: Iterable  Enhanced for-loops
	Slide 11: Method Dispatch & Overloading
	Slide 12: Overloading
	Slide 13: “Animal-Kingdom-Oriented Programming”
	Slide 14: Recall: Multiple Phases
	Slide 15: Compile Time vs. Run Time
	Slide 16: Compile Time vs. Run Time
	Slide 17: Compile Time vs. Run Time
	Slide 18: Dynamic Method Dispatch
	Slide 19: Overloading vs Overriding
	Slide 20: Structure of Inheritance/Subtyping
	Slide 21: Moving Up Loses Information
	Slide 22: Recovering Lost Type Information
	Slide 23: (Down-)Casts
	Slide 24: instanceof
	Slide 25: instanceof + casts
	Slide 26: Generics
	Slide 27: Old Java List Interface
	Slide 28: Generics – Type Abstraction
	Slide 29: Generic Type Arguments
	Slide 30: Generic Type Arguments
	Slide 31: WARNING – Type Erasure
	Slide 32: WARNING – Type Erasure
	Slide 33: Generics and Subtyping
	Slide 34: Advanced Generics & Subtyping
	Slide 35: Subtyping - Variance
	Slide 36: Subtyping - Variance
	Slide 37: Subtyping - Variance
	Slide 38: Subtyping - Variance
	Slide 39: Subtyping – Variance & Generics
	Slide 40: Subtyping – Variance & Generics
	Slide 41: Subtyping – Variance & Generics
	Slide 42: Subtyping – Variance & Generics
	Slide 43: Generics – Constraints

